or input strings; b) \(M_1 \) generates an encoding for the \(i \)th Turing machine \(M_i \) using the procedure described in Section 5.6; c) \(M_1 \) simulates \(M_H \) to determine if \(M_i \) halts on \(w = x_i \); d) if \(M_H \) says that \(M_i \) does not halt, \(M_1 \) accepts \(w \); e) if \(M_H \) says that \(M_i \) does halt, \(M_1 \) simulates \(M_i \) on input string \(w \). \(M_1 \) rejects \(w \) if \(M_i \) accepts it and accepts \(w \) if \(M_i \) rejects it. Clearly, \(M_1 \) recognizes strings in \(\mathcal{L}_1 \), which contradicts the nature of \(\mathcal{L}_1 \). Thus, \(M_H \) cannot exist. \(\square \)

The second unsolvable problem we consider is the **empty tape acceptance problem**: given a Turing machine \(M \), we ask if we can tell whether it accepts the empty string. We reduce the halting problem to it. (See Fig. 5.13.)

\[
\mathcal{L}_{ET} = \{ \rho(M) \mid L(M) \text{ contains the empty string} \}
\]

Theorem 5.8.2 The language \(\mathcal{L}_{ET} \) is not decidable.

Proof To show that \(\mathcal{L}_{ET} \) is not decidable, we assume that it is and derive a contradiction. The contradiction is produced by assuming the existence of a TM \(M_{ET} \) that decides \(\mathcal{L}_{ET} \) and then showing that this implies the existence of a TM \(M_H \) that decides \(\mathcal{H} = \text{HALT} \).

Given an encoding \(\rho(M) \) for an arbitrary TM \(M \) and an arbitrary input \(w \), the TM \(M_H \) constructs a TM \(T(M, w) \) that writes \(w \) on the tape when it is empty and then simulates \(M \) on \(w \), halting if \(M \) accepts it. Thus, \(T(M, w) \) accepts the empty tape if \(M \) halts on \(w \). \(M_H \) decides \(\mathcal{H} \) by constructing \(T(M, w) \) and passing it to \(M_{ET} \). (See Fig. 5.13.) The language accepted by \(T(M, w) \) includes the empty tape if and only if \(M \) halts on \(w \). Thus, \(M_H \) decides the halting problem, which as shown earlier cannot be decided. \(\square \)

Note: \(\rho(M) = \langle M \rangle \), \(M \in \mathcal{T} \).

Figure 5.13 Schematic representation of the reduction from \(\mathcal{H} \) to \(\mathcal{L}_{ET} \).