Quiz 2 Answers

FALL 2018
(Green/Blue)
(White)

#1 (Multiple choice)

i) A is False: \[\triangle \] prob. of finding mincut = 1
 B is True: \[\text{Prob(finding mincut)} \geq \frac{2}{5} = \frac{1}{15} > \frac{1}{25} \]
 C is False; counter example: complete graph on 5 nodes

ii) A. Outputs KL \neq M
 B. Output is correct since KL \neq M.
 C. Error probability is 2/8, since algo: outputs KL=M iff V=(0,0,0)^T or (0,0,1)^T

iii) A. True; \text{deg}(g) \neq \text{deg}(f)
 B. False; \text{deg}(g) is unknown. \text{deg}(f-g) could be arbitrary
 C. False; ditto as above

2. i) Flip c 3 times to get result r.
 If r is in {HHH, HHT, HTT} let \(b = H \),
 If r is in {HHT, HTT, THT, TTH, TTT} let \(b = T \),
 \[\text{Prob}(b=H) = \frac{3}{8} \text{ and } \text{Prob}(b=T) = \frac{5}{8} \text{ as expected} \]
 Sequence of coin flip has prob = \(\frac{1}{8} \).

ii) Flip c 4 times to get result r. Consider r as a 4 bit +
 integer from 1 to 16,
 If \(r \in \{1, 2, \ldots, 8\} \) then reflip. (Try again)
 If \(r \in \{9, 10, 11, 12, \ldots, 16\} \) let \(b = H \),
 If \(r \in \{10, 11, 12, \ldots, 16\} \) let \(b = T \)
 Note: \text{prob (you have to reflip forever)} = 0. (Getting The values of \(r \) you obtain, one of \(H, T \) values are all equally likely, and \text{prob}(b=H) = \frac{3}{16}, \text{prob}(b=T) = \frac{13}{16}.}
(i) REDRAWN $G = n$ max-cut has size ≤ 7,
(edges marked by x's)
\[\text{max cut} = (a, c, e, f) (b, d, e) \]

(ii)
\[G_n = (V, E) \text{ where } V = \{1, 2, 3, \ldots, n\} \]
\[E = \{ (1, 2), (2, 3), (3, 4), \ldots, (n-1, n), (n, 1) \} \]

The max-cuts of G_n have size 2.
Any 2 edges determine a min-cut. There are n edges in G_n, so $\frac{n(n-1)}{2}$ pairs of edges, and so $\frac{n(n-1)}{2}$ min-cuts.

4. (Farms)
- \(F_1 = P_2^k \) if and only if \(P_{F_1}(\alpha) \equiv P_{F_2}^k(\alpha) \iff P_{F_1}(\alpha) \equiv P_{F_2}(\alpha^k) \)
- Degree of \(P_{F_2}^k(\alpha^k) = d_2 k \). Let \(d \triangleq \max d, d_2 k \).

Algorithm
\[\text{i/p: } P_{F_1}(\alpha), P_{F_2}(\alpha) \]
1. Let \(\mathcal{S} \) be a set of size $8d+1$.
2. Pick \(\gamma \in \mathcal{S} \) uniformly at random.
3. Output \(F_1 = F_2^k \) if \(P_{F_1}(\gamma) = P_{F_2}(\gamma^k) \).
4. Output \(F_1 \neq F_2^k \) otherwise.

Analysis
if \(P_{F_1}(\alpha) \equiv P_{F_2}(\alpha^k) \) the algo. will always output the correct answer. Otherwise, the probability that the algo. makes an error
\[\leq \frac{d}{15} \leq \frac{1}{8} \]
QUIZ 2 ANSWERS

Q5 530
FALL 2018
BLUE/GREEN

1. A. True; \(\deg(g) \neq \deg(f) \)
B. False; \(\deg(g) \) is unknown. \(\deg(f-g) \) could be arbitrary.
C. False; ditto

2. A. Algo. outputs \(KL \neq M \)
B. Correct; since \(KL \) is in fact not equal to \(M \).
C. \(\frac{1}{8} \)

3. A. False; Counterexample: \(G_n \)
B. False; Counterexample - Consider a graph on \(n \) vertices where \(n-1 \) vertices form a cycle. There is an edge from one of the cycle-vertices to the \(n \)th vertex. Prob. of finding mincut here is \(\frac{2}{n} \). Statement false for \(G_{151} \).
C. False; \(\square \) is counter example.

2(i) Flip c 3 times to get result \(r \)
If \(r \) is in \(\{HHH, HHT, HTT, TTH\} \) let \(b = H \),
If \(r \) is in \(\{HHT, THT, TTHT, TTT\} \) let \(b = T \).
Prob \((b=H) = \frac{3}{8} \) and Prob \((b=T) = \frac{5}{8} \) as each sequence of coin flip has prob \(= \frac{1}{8} \).

2(ii) Flip c 4 times to get result \(r \). Consider \(r \) as a 4 bit integer from \(1 \) to \(16 \).
If \(r \in \{1, 2, \ldots, 63\} \) then reflip. (Try again)
If \(r \in \{7, 8, 9, 98\} \) let \(b = H \), If \(r \in \{10, 11, 12, \ldots, 15\} \) let \(b = T \).
Note: prob \(\text{(you have to reflip forever)} = 0 \). Getting the values of \(r \) you obtain, one of \(10 \) values are all equally likely, and prob \((b=H) = \frac{3}{16} \), prob \((b=T) = \frac{7}{16} \).
3. RE-DRAWING $G = \begin{array}{c}
\begin{array}{c}
\text{max-cut has size 7,}
\text{edges marked by x's)}
\maxcut = (a, c, d) (b, d, e)
\end{array}
\end{array}
\begin{array}{c}
(\exists i) \quad G_{n,i} = (V, E) \text{ where } V = \{1, 2, 3, \ldots, n\},
E = \{(1, 2), (2, 3), (3, 4), \ldots, (n-1, n), (n, 1)\}
\text{The min-cuts of } G_{n,i} \text{ have size 2.}
\text{Any 2 edges determine a min-cut. There are n edges in } G_{n,i}, \text{ so } \frac{n(n-1)}{2} \text{ pairs of edges, and so } \frac{n(n-1)}{2} \text{ min-cuts.}
\end{array}

\#4. (Games)
- $F_1 = F_2^k$ if and only if $P_{F_1}(x) \equiv P_{F_2^k}(x) \iff P_{F_1}(x) \equiv P_{F_2}(x^k)$.
- Degree of $P_{F_2}(x^k) = d_2 k$. Let $d \equiv \max d_i, d_2 k$.

\underline{Algorithm}
\begin{enumerate}
\item \text{Safek be a set of size } 8d+1.
\item \text{Pick } \gamma \in S \text{ uniformly at random.}
\item \text{Output } F_1 = F_2^k \text{ if } P_{F_1}(\gamma) = P_{F_2}(\gamma^k).
\item \text{Output } F_1 \neq F_2^k \text{ otherwise.}
\end{enumerate}

\underline{Analysis}
\begin{enumerate}
\item \text{If } P_{F_1}(x) \equiv P_{F_2}(x^k), \text{ the algo. will always output the correct answer. Otherwise, the probability that the algo. makes an error } \leq \frac{d}{15} \leq \frac{1}{8}.
\end{enumerate}