CS 530: Algorithms --- Steve Homer--- Summer 2018

Homework 1 --- Due Wednesday, May 30

Reading : 1. Chapter 26, pages 708-736
2. Chapters 1-4, look over and read whatever seems new to you.

Problems:

1. (10 points). A dag is a directed acyclic graph (acyclic means no cycles). The topological sorting problem is: Given a dag G, sort the vertices of G is such a way that if G has an edge (u,v) then u occurs earlier than v in the sorted order.

One topological sorting algorithm given in our textbook (page 613) uses DFS as its main component. However there are simpler/more direct ways to do this.

i. Write an algorithm to give a topological sort of a dag G = (V,E) which does not use a depth first search.

ii. Carry out your algorithm on the graph in figure 22.8 on page 615 of our book.

iii. Show that your algorithm can be implemented in O(n+m) steps where n = |V| and m = |E|.

2. (12 Points) Answer the 4 T (true) or F (false) questions below.

Justify your answers here by saying why the statement is true or by giving a small counter example.

i. (True or False: Let (S,T) be a minimum s-t cut in the network flow graph G, and let (u,v) be an edge that crosses the cut in the forward direction, i.e., vertices s,u are in S and v,t in T.

If you increase the capacity of the edge (u,v) in G then you always also increase the maximum flow of G.

ii. True or False: If all capacities of a flow graph G are multiplied by some integer multiple of 5, then the values of the max flow of G is also a multiple of 5.

iii. True or false: There is no known polynomial time algorithm to solve the max-flow problem.

iv. True or False: Let G be a bipartite graph with n vertices and m edges. There
is an algorithm, to test if a matching for G is maximum which runs in time O(n+m) steps.

3. (10 points) Use the Ford Fulkerson algorithm to find the maximum flow in the following flow graph.

Find the min s-t cut of the graph as well.

5. (5 points) Give an example of a bipartite graph \(P = (L,R) \) whose corresponding flow graph \(G \) (as described at the beginning of Section 26.3 of the textbook) has a single unique max-flow and also the property that for every s-t min-cut \((S,T) \) of \(G \) both \(S \) and \(T \) contains at least 2 vertices.

For the example you should draw the picture of \(P \) (showing \(R \) and \(L \)) and the corresponding picture of \(G \), and then write down all of the s-t min-cuts in \(G \) and as well as the one max flow of \(G \).

5. (10 points) (i). Recall the min cut problem for undirected graphs. Give an example of a graph \(G \) whose is min cut is not any single vertex of the graph. That is, for any vertex \(v \) in \(G \) the cut consisting of \(\{v\} \) on one side and all other vertices on the other is not a min cut.

(ii). Assume \(G \) is a 10 node graph and that \(G \) has a min cut of cost 5. Explain why \(G \) must have at least 25 edges.

(iii). Assume \(H \) is a 10 node graph which is a simple cycle. That is \(H \) is connected and every node in \(H \) has exactly 2 neighbors. Clearly the size of \(H \)'s min cut is 2. How many different min cuts does \(H \) have? Explain your reasoning.