Christopher Kwan

CS 535 | Homer | Fall 2010

Homework 5

Discussed with Mike Breslav and Dan Schatzberg

1. Page 136, #6.11.
Prove: co-NP = NP <-> some NP-complete set (X) has its complement (XBar) in NP.

(->): co-NP = NP ->some NP-complete set (X) has its complement (XBar) in NP,

Since co-NP = NP, the complements of all languages in NP are also in NP.

Since X is NP-complete, it is in NP.

Thus, since the complements of all language$in NP are also in NP and since X is in NP,
the complement of X, XBar, is also in

(<-}: XBar in NP -> co-NP = NP.

A co-NP-complete problem is the complement of an NP-complete problem (Page 136,
Homework 6.12 part 1). Thus, since X is NP-complete, its complement, XBar, is co-NP-
complete.

Since XBar is co-NP-complete, all languages in co-NP can be reduced to X;}/

Since XBar is in NP and all co-NP languages can be reduced to it, all co-NP languages are
in NP.

Since all co-NP languages are in NP, co-NP is aw.

Since XBar is in NP, its complement XBarBar is in co-NP by definition of complements.
The complement of the complement of X (XBarBar) = X, thus X is in co-NP.

Since X is NP-complete, all NP languages can be reduced to it.

Since X is in co-NP and all NP languages can be reduced to X, all NP languages are in co-
NP,

Since all NP languages are in co-NP, NP is a sul€et of co-NP.

Since, co-NP is a subset of NP and NP is a subset of co-Np/ co-NP = NP.

2. Page 136, #6.12, part 2.
Aset A in co-NP is <} -complete for co-NP if for all L in co-NP, L <2, A.

Show the problem (X) of determining whether a formula (F) of propositional logic is a tautology

is <P -complete for co-NP.

* Aco-NP-complete problem is the complement of an NP-complete problem (Page 136,
Homework 6.12 part 1).

Page 10of 6

ckwan@bu.edu

due: 11/23/2010

Homework 5

Rick Skowyra,
CSbh35

-~ A3

Problem 2

Claim: TAUTOLOGY = {x | x is a formula of propositional logic which is valid for all
assignments} is co-NP-Complete.

Proof: Toshow that TAUTOLOGY is co-NP-Complete, we must show that TAUTOLOGY €
co-NP and VA € co-NP, A <{ TAUTOLOGY. To show TAUTOLOGY ¢ co-NP, we can
construct a polynomial time verifier of the 'reject’ case. Define a TM M which, given a
Boolean formula and an assignment of its variables, decides if the assignment does not sat-
isfy the formula. Let M be an Turing machine with a read-only input tape and a work tape.

onstruct M as follows:

2. Replace each variable with its value. This takes linear time.

3. Recursively replace every pair-wise operation with its value (i.e. (0 A 1) is replaced
with 0). Consider that the first replacement phase reduces the size of the formula from
|z| to log(]z|) in O(|z|) steps. Each replacement phase continues to halve the size of
the formula to be evaluated in the next phase. This step therefore takes polynomial
time.

4. If the final replacement phase yields a 0, halt and reject.
5. If the final replacement phase yields a 1, halt and accept.

Clearly, M € DTIME(n*). Next, we must show that VA € co-NP, A <{; TAUTOLOGY .
To do so we can show SAT <P TAUTOLOGY . Given a NTM N which decides TAUTOL-
OGQGY in polynomial time, construct a NTM M which decides SAT in polynomial time as
follows:

1. On input z, create ' = —z. This take linear time.
2. Run N(z'). This takes polynomial time.

3. If N accepts, halt and accept.

4. Otherwise halt and reject.

3
M clearly runs in polynomial time. Since SAT is co-NP-Complete, TAUTOLOGY €co-NP, , }
and SAT <P, TAUTOLOGY, TAUTOLOGY is co-NP-Complete. - |
|
|

Problem 3

Claim: CLIQUE <!, VERTEX COVER
Proof: Given a NTM N which decides VERTEX COVER in polynomial time, we can |
construct a NTM. M which decides CLIQUE in polynomial time. Define M as follows: |

1. Ensure that the input is of the form G=(V,E) and an integer k.

2. Create G¢ = (V, E¢). (E° is the set of all edges not present in F). This takes polynomial
time. (TIME(n?) if using an adjacency matrix.)

3. Run N(G¢, |V| — k). This takes polynomial time.

4. If N accepts, halt and accept.

5. Otherwise halt and reject.

Clearly, M halts in polynomial time. The above reduction relies on the fact that in the
complement to a graph, an independent set (the remaining vertices after ing found the
vertex cover) becomes a clique, and vice versa. So a vertex cover gSize |V| — k in the
complement to a graph indicates a clique of size k in the original

\0\\‘\) -

%,

Problem 4

Define L(N) to be the set of all input strings z that are accepted with probability at least
one half by a probabilistic polynomial-time NTM N.

1. L(N) € PSPACE. To show this, consider the binary tree of computational paths formed

by N. For a path p in N(x)’s computational tree, Pr[p] = 2, where ¢ is the number of
nondeterministic choices made in the path. In order to determine the total probability
of acceptance for an input word z, the sum over all accepting paths for z must be
computed. We can do this in polynomial space with the following algorithm:

(a) On input z, deterministically perform a depth-first search over N’s computatrional ‘

) \Ou shou\é Q\So h'\e_hb Oon .H\
<(c; If that path accepts, record Prip). B'n;t\t‘bi\ \.SP .ese"l\:o Pésmtaée
)

tree.

(b) For each path p explored, compute Prip].

d

(e) Explore the next path, re-using the tape cells that were used for the previous
path.

Otherwise, discard the sum snd clear all state related to that pat

(f) If at any point the total probability of accepting paths exceeds %, halt and accept.

(g) If all paths have been explored and the total probability of accepting paths does
not exceed £, halt and reject.

The above algorithm uses a polynomial amount of space. Consider that a N must halt
in |z|* steps for some fixed k. This puts a mial bound on the computational
path length of N. Since a TM cannot usgfiore than one tape cell per time step, each
path must use only a polynomial a nt of space. Since we re-use the tape cells for
each path, the number of paths g#ht must be explored is independent of the amount
of space used. Therefore L(N) £ PSPACE.

. If Pr(z) = 0 Vz ¢ L(N), L(N) € NP. This follows directly. Since Pr(z) = 0

Vz ¢ L(N), N will always halt in a non-accepting state if z ¢ L(n). Furthermore, if
z € L(n), there always exists at least one accepting since Pr(z) > 3. Therefore
N € NTIME(n*), N has at least one accepting“Path if z € L(N), and N has no
accepting path if z ¢ L(N). Therefore L(NV)

Pfdblem 5

1. A<% B and B € P implies A € P. Recall that if A <% B, there exists a polynomial

time bounded oracle TM O s.t. z € A < O(z, B) accepts. Then , we can construct a
polynomial time TM M to decide A:

(a) On input z, run O(x).

X

(b) If O accepts, halt and accept.
(c) Otherwise halt and reject.

By definition, O € P, so it runs in at most TIM E(|z|*). Each time O queries the oracle
B, it writes an input word y on the oracle tape. Since TIM E(n*) C SPACE(n¥),
ly| < |z|* for some fixed k. We know that B € P, so on input v, it runs in TIME(|y|Y.
Since |y| < |z|*, |y|' < |z|*, which is still polynomiakFinally, recall that O may query
B |z|* times, since O € P and an oracle query ta}s one time step. Therefore the total
running time of M is TIM E(|z|* * |z|®) = TIM E(z***), so A € P.

D 2) A < A. This can be easily shown via construction of polynomial time OTM O:

(a) Write = on to the oracle tape. This takes |z| steps.

 (b) Q’uefy the bracle. This takes one step.
(c) ‘If the ora(;jlé é@cepts, halt and reject. Thjg"takes one step.
)

(d) If the oracle rejects, halt and accept.Yhis takes one step.

The total running time of O is TIM E(O(n)), so O € P.

Problem 6

The following function is one-way: it is polynomial-time computable, but cannot be inverted
in polynomial time. Define f : 0* — {0,1}" s.t. on unary input z, f(z) is its binary
representation. The following algorithm computes f(z) given z, and runs in polynomial
time on an offline Turing machine:

1. If there is a B on the input tape, halt and reject.
2. Read one character of the input word.

Write a 1 on the work tape.

Ll

Read the next character.

5. If it is B, halt and accept.

6. If not, start scanning the work tape head left. This takes at most TIME! ?
7. If a 0 is read:

(a) Write a 1 and start scanning right.

(b) Until a B is encouptered, write a 0 in each cell.

8. If a 0 is not read:

(a) Write a 1 to the first tape cell. '\O /

(b) Scan right, writing a 0 in each tape cell until a B is encountered.
(c) Replace B with 0. ‘

9. Go to step 4

As an upper bound on the time complexity of the above algorithm, note that reading one
character of the input causes at most 2 * y + 1 operations on the work tape, where y is the
size of the string currently on the work tape. Recall that the gth of a binary number
is logarithmically smaller than its equivalent in unary. Thegpefore above algorithm runs in
TIME(O(2 % log(n)?)). Clearly, f € PF. Trying to inverf/the function, however, causes an
exponential increase in the space needed to represent tde output (by definition of a unary
number). Since it requires one time step to write to £ tape cell, an exponential amount of
time relative to the input is required. Therefore f~Y¢ PF.

Problem 7

Let L be a PSPACE-Complete language.
Claim: If L € NP, then NP = PSPACE.

Proof:

This proof follows naturally from the definition of copysleteness. Recall that if L is PSPACE-
Complete, then VA € PSPACE, A <P, L. Nogethat if A <P Land L € NP, A€ NP.
We know that NP C PSPACE. If L € NEt%hen all elements of PSPACE are also in NP,
and PSPACE C NP. By tht definition of set equality, NP = PSPACE.

(O/lo

