Efficiency of Binary Search Trees

So far, we have seen that the best case for a BST is a perfect triangle, and the worst case is a linked list:

Best case: $\Theta(\log N)$

Worst case: $\Theta(N)$

Of course it may not be possible to get a perfect triangle, but we can always create a tree in which the leaves are always within two levels of each other:

Best case: $\Theta(\log N)$

Worst case: $\Theta(N)$

What happens on average?
Efficiency of Binary Search Trees

What happens on average? You are doing this as part of Lab 08: The scenario would be modeled on our experiments with average case for sorting:

- Create 1000 random BSTs for each size $N = 1, 2, 3, 4, \ldots, 100$ (or similar parameters) by creating a random array of size N and then inserting each key into an initially-empty tree;
- Find the average cost of lookups in each tree (sum of cost of each node / N);
- This simulates a situation where a random BST is created, then we repeatedly lookup keys (we could alternately do a random series of inserts, lookups, and deletes on a single tree and see what happens – results are similar).

<table>
<thead>
<tr>
<th>Cost of paths:</th>
</tr>
</thead>
<tbody>
<tr>
<td>S: 1, E,X: 2, A,R: 3, C,R: 4</td>
</tr>
</tbody>
</table>

Sum: 19

Average Cost: $\frac{19}{7} = 2.71$

Your results for Lab 08 should show a "good result" for the average case! 😊

Balanced BSTs

The next question is always: Can we do better?

Specifically, can we find a way to eliminate the worst case trees, and get $\Theta(\log N)$ for all operations?

This amounts to the following problem: Can we restructure the tree during inserts and deletes to prevent imbalanced trees?

The answer, of course, is YES, and one solution to creating balanced trees is called 2-3 Trees....
2-3 Trees

2-3 Trees generalize binary search trees by allowing "wider" nodes that can contain 1 or 2 keys, and 2 or 3 pointers:

Binary Search Tree:

```
  23
 /   \
10    34
   /   \
  15
```

2-3 Tree:

```
  12  20
 /     \
  5     15
 /     / \ \
2 3   6   17 18
```

```java
class Node {
  int K1, K2;
  Node left;
  Node mid;
  Node right;
}
```

2-3 Trees

Generalizing the basic idea of binary search trees, we have "trinary search trees" where the two keys divide up the descendent nodes into three instead of two subtrees:

```
K1    K2
/ \    / \ \
< K1 <x <K2
```

```
  12  20
 /     \
  5     15
 /     / \ \
2 3   6   17 18
```

But we may consider normal BST nodes (1 key, 2 pointers) to be a special case, where the second key does not exist:

\[
\begin{align*}
\text{< } K_1 & \quad K_1 < x < K_2 \\
K_1 & \quad > K_2
\end{align*}
\]

But we may consider normal BST nodes (1 key, 2 pointers) to be a special case, where the second key does not exist, and we will draw these as we would with normal BSTs:
2-3 Trees

Searching such a tree is a simple generalization of search in BSTs: at each node you scan from the left through the two keys and figure out where the search key k might be:

```java
boolean member(int k, Node p) {
    if (p == null)
        return false;
    else if (k < p.K1)
        return find(k, p.left);
    else if (k == p.K1)
        return true;
    else if (p.K2 does not exist || k < p.K2)
        return find(k, p.mid);
    else if (k == K2)
        return true;
    else
        return find(k, p.right);
}
```

2-3 Trees

Insertion into a 2-3 tree is a little bit complicated, because we will want to maintain the trees in balanced form (perfect triangles):

A 2-3 tree is balanced if every path from the root to a leaf node has the same length; note that nodes may contain 2 keys and 3 pointers, or 1 key and 2 pointers:
Rules for inserting a new key into a 2-3 tree:

1. As with BSTs, you search for the key; if you find it, do nothing (don’t insert duplicates); if you don’t find it, then insert into the leaf node that you last looked in. If there is room, you are done.

Example: Let’s insert a 12 into an empty tree; when you insert into an empty tree, you create a new node and insert into the K_1 slot:

```
12 --
```

Now let’s insert an 8, which can fit into the node if we move the 12 over:

```
8 12
```
2-3 Trees

Rules for inserting a new key into a 2-3 tree:

1. As with BSTs, you search for the key; if you find it, do nothing (don’t insert duplicates); if you don’t find it, then insert into the leaf node that you last looked in. If there is room, you are done.
2. But if there are already 2 keys, then insert into the node anyway, creating an “error node” containing 3 keys (too many!).

Example: Let’s insert a 12 into an empty tree; when you insert into an empty tree, you create a new node and insert into the K_1 slot:

```
12
```

Now let’s insert an 8, which can fit into the node if we move the 12 over:

```
8 12
```

Next let’s insert a 15, which expands the node into an error node containing too many keys:

```
8 12 15
```

Immediately fix this error by transforming this node into a balanced three-node tree:

```
12
/
8

/\n15
```

Next let’s insert a 15, which expands the node into an error node containing too many keys:

```
8 12 15
```

Immediately fix this error by applying the α-transformation to create a balanced tree:
2-3 Trees

α-transformation:

The subtrees A – D may be null!

Rules for inserting a new key into a 2-3 tree:

1. As with BSTs, you search for the key; if you find it, do nothing (don’t insert duplicates); if you don’t find it, then insert into the leaf node that you last looked in. If there is room, stop.

2. But if there are already 2 keys, then insert into the node anyway, creating an “error node” containing 3 keys (too many!). Then apply the α-transformation to change this into a legal configuration of three nodes.

Immediately fix this error by transforming this node into a balanced three-node tree:

Next let’s insert a 20, which expands the right-most leaf node:
2-3 Trees

Rules for inserting a new key into a 2-3 tree:

1. As with BSTs, you search for the key; if you find it, do nothing (don't insert duplicates); if you don't find it, then insert into the leaf node that you last looked in. If there is room, stop.
2. But if there are already 2 keys, then insert into the node anyway, creating an "error node" containing 3 keys (too many!). Then apply the α-transformation to change this into a legal configuration of three nodes.

Next let's insert a 20, which expands the right-most leaf node:

Then let's insert a 30, which creates another error node:

But we immediately fix the error by using the α-transformation:

Rules for inserting a new key into a 2-3 tree:

1. As with BSTs, you search for the key; if you find it, do nothing (don't insert duplicates); if you don't find it, then insert into the leaf node that you last looked in. If there is room, stop.
2. But if there are already 2 keys, then insert into the node anyway, creating an "error node" containing 3 keys (too many!). Then apply the α-transformation to change this into a legal configuration of three nodes.

Then let's insert a 30, which creates another error node:

But we immediately fix the error by using the α-transformation:
Rules for inserting a new key into a 2-3 tree:

1. As with BSTs, you search for the key; if you find it, do nothing (don’t insert duplicates); if you don’t find it, then insert into the leaf node that you last looked in. If there is room, stop.

2. But if there are already 2 keys, then insert into the node anyway, creating an “error node” containing 3 keys (too many!). Then apply the α-transformation to change this into a legal configuration of three nodes.

3. After applying the α-transformation, if there is a parent node, then we must apply the β-transformation to fix the imbalance created by the α-transformation.

But we immediately fix the error by using the α-transformation:

But this is imbalanced, so we will combine the root of the new subtree with the parent node:
2-3 Trees

β-transformation(s): If the parent has only 1 key, then insert the root into the parent node and distribute the subtrees accordingly:

Before Transformation:

```
/\  
K₁ -- K₂
  / \   / \  
A   B C  A   B   C
```

After Transformation:

```
/\  
K₁ K₂
  / \   / \  
A   B C  A   B   C
```

2-3 Trees

β-transformation(s): If the parent has only 1 key, then insert the root into the parent node and distribute the subtrees accordingly:

Before Transformation:

```
/\  
K₁ -- K₂
  / \   / \  
A   B C  A   B   C
```

After Transformation:

```
/\  
K₁ K₂
  / \   / \  
A   B C  A   B   C
```
2-3 Trees

β-transformation(s): If the parent has 2 keys, then create an error node and repeat the α-transformation (you may have to continue apply α- and β-transformations up the tree):

![Diagram of 2-3 Trees β-transformation](image)

β-transformation(s): If the parent has 2 keys, then create an error node and go back to the α-transformation (you may have to continue apply α- and β-transformations up the tree):

![Diagram of 2-3 Trees β-transformation](image)
2-3 Trees

β-transformation(s): If the parent has 2 keys, then create an error node and go back to the α-transformation (you may have to continue apply α- and β-transformations up the tree):

Rules for inserting a new key into a 2-3 tree:

1. As with BSTs, you search for the key; if you find it, do nothing (don’t insert duplicates); if you don’t find it, then insert into the leaf node that you last looked in. If there is room, stop.
2. But if there are already 2 keys, then insert into the node anyway, creating an “error node” containing 3 keys (too many!). Then apply the α-transformation to change this into a legal configuration of three nodes.
3. After applying the α-transformation, if there is a parent node, then we must apply the β-transformation to fix the imbalance created by the α-transformation.
4. You may have to continue a series of α- and β-transformations moving up the path to the root, until a balanced tree with no error nodes is obtained.
Summary of rules for inserting a new key into a 2-3 tree:

1. Insert new key into appropriate leaf node, potentially creating an error node;

2. If there is an error node, apply α- and β-transformations moving up the path to the root, until a balanced tree with no error nodes is obtained.
2-3 Trees

Worst-Case Time Complexity of 2-3 Trees (counting the number of comparisons): Member(…)

Consider the following tree:
- What is the cost (# of comparisons) for finding 2?
- How about 27?
- Which keys represent the worst case for this tree?

![Diagram of a 2-3 tree with keys and comparisons]

2-3 Trees

Worst-Case Time Complexity of 2-3 Trees (counting the number of comparisons): Member(…)

Consider the following tree:
- What is the cost (# of comparisons) for finding 2? 3
- How about 27? 5
- Which keys represent the worst case for this tree? 46 or 66, with 6 comparisons

![Diagram of a 2-3 tree with keys and comparisons]
2-3 Trees

Worst-Case Time Complexity of 2-3 Trees (counting the number of comparisons): Member(…)

The worst-case for member(…) is to go all the way to a leaf node, and do 2 comparisons at each node; in a balanced tree with N keys, the height is \(\Theta(\log N) \), i.e., \(C \cdot \log N + \ldots \) for some constant C, but if we have to do 2 comparisons at each node, this becomes \(2 \cdot C \cdot \log N + \ldots \) which is still \(\Theta(\log N) \) comparisons.

2-3 Trees

Worst-Case Time Complexity of 2-3 Trees (counting the number of comparisons): Insert(…)

For insert(…), the worst thing that can happen is that you insert the new key at the bottom of the tree, and it causes \(\alpha \)- and \(\beta \)-transformations all the way back up the tree. Each transformation takes a constant C amount of work, so the cost is \(\Theta(\log N) \) to find the location (as in member(…)), and \(C \cdot \Theta(\log N) \) transform the tree back up to the root. \((1 + C) \cdot \Theta(\log N) \) is still \(\Theta(\log N) \).
Worst-Case Time Complexity of 2-3 Trees (counting the number of comparisons):

Member(....): $\Theta(\log N)$

Delete(....): $\Theta(\log N)$ (not described)

Insert(....): $\Theta(\log N)$

Code Complexity:

2-3 Trees are generally encoded as normal BSTs with two different colored links ("Red-Black Trees"), and the code for insert is not as complicated as you would imagine:

```java
private static Node insert(int key, Node t) {
    if (t == null)
        return new Node(key);
    else if (key < t.key) {
        t.left = insert(key, t.left);
        return applyTransformations(t);
    } else if (key > t.key) {
        t.right = insert(key, t.right);
        return applyTransformations(t);
    } else
        return t;
}

private static Node leanRight( Node t ) {
    Node newRoot = t.left;
    t.left = newRoot.right;
    newRoot.right = t;
    newRoot.red = t.red;
    t.red = true;
    return newRoot;
}

private static Node rotateLeft( Node t ) {
    Node newRoot = t.right;
    t.right = t.right.left;
    newRoot.left = t;
    newRoot.left.red = false;
    newRoot.right.red = false;
    return newRoot;
}

private static Node applyTransformations( Node t ) {
    if(t == null)
        return null;
    if(t.left != null && t.left.red)
        if(t.left != null && t.left.left)
            t = leanRight(t);
        if( t.right != null && t.right.red
            && t.right.right != null && t.right.right.red)
            t = rotateLeft(t);
    return t;
}
```