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Abstract

There is an increased interest in using broadcast disks to support mobile access to real-

time databases. However, previous work has only considered the design of real-time

immutable broadcast disks, the contents of which do not change over time. This paper

considers the design of programs for real-time mutable broadcast disks | broadcast

disks whose contents are occasionally updated. Recent scheduling-theoretic results

relating to pinwheel scheduling and pfair scheduling are used to design algorithms for

the e�cient generation of real-time mutable broadcast disk programs.

Keywords: Broadcast disks; real-time constraints; disk updates; pfair scheduling;

real-time database and information retrieval systems; mobile computing.

1 Introduction

Mobile computers are likely to play an important role at the extremities of future large-scale

distributed real-time databases. One such example is the use of on-board automotive navi-

gational systems that interact with the database of an Intelligent Vehicle Highway System

(IVHS). IVHS systems allow for automated route guidance and automated rerouting around

tra�c incidents by allowing the mobile vehicle software to query and react to changes in IVHS

databases [18, 17]. Other examples include wearable computers for soldiers in the battle-

�eld and computerized cable boxes for future interactive TV networks and video-on-demand.

Such systems are characterized by the signi�cant discrepancy between the downstream com-

munication capacity from servers (e.g. IVHS backbone) to clients (e.g. vehicles) and the

upstream communication capacity from clients to servers. This discrepancy is the result
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of: (1) the huge disparity between the transmission capabilities of clients and servers (e.g.,

broadcasting via satellite from IVHS backbone to vehicles as opposed to cellular modem

communication from vehicles to IVHS backbone), and (2) the scale of information ow (e.g.,

thousands of clients may be connecting to a single computer for service). Moreover, the

limited power capacity of some mobile systems (e.g., wearable computers) requires them to

have no secondary I/O devices and to have only a small bu�er space (relative to the size of

the database) that acts as a cache for the information system to which the mobile system is

attached.

Broadcast Disks: The concept of Broadcast Disks (Bdisks) was introduced by Zdonik et

al. [27] as a mechanism that uses communication bandwidth to emulate a storage device (or

a memory hierarchy in general) for mobile clients of a database system. The basic idea (illus-

trated in �gure 1) is to exploit the abundant bandwidth capacity available from a server to

its clients by continuously and repeatedly broadcasting data to clients, thus in e�ect making

the broadcast channel act as a set of disks (hence the term \Broadcast Disks") from which

clients could fetch data \as it goes by." Work on Bdisks is di�erent from previous work in

both wired and wireless networks [14, 16] in that several sources of data are multiplexed and

broadcast to clients, thus creating a hierarchy of Bdisks with di�erent sizes and speeds. On

the server side, this hierarchy gives rise to memory management issues (e.g., allocation of

data to Bdisks based on priority/urgency). On the client side, this hierarchy gives rise to

cache management and prefetching issues (e.g., cache replacement strategies to improve the

hit ratio or reduce miss penalty). In [4], Acharya, Franklin and Zdonik discuss Bdisks organi-

zation issues, including client cache management [1], client-initiated prefetching to improve

the communication latency for database access systems [3], and techniques for disseminating

updates [2].

Previous work in Bdisks technology was driven by wireless applications and has concen-

trated on solving the problems associated with the limited number of uplink channels shared

amongst a multitude of clients, or the problems associated with elective disconnection (as an

extreme case of asymmetric communication), when a remote (e.g. mobile) client computer

system must pre-load its cache before disconnecting. Problems that arise when timing and

reliability constraints are imposed on the system were not considered.
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Figure 1: The Concept of Broadcast Disks

Real-time considerations: Previous work on Bdisks protocols has assumed that the rate

at which a data item (say a page) is broadcast is dependent on the demand for that data

item. Thus, hot data items would be placed on fast-spinning disks (i.e. broadcast at a higher

rate), whereas cold data items would be placed on slow-spinning disks (i.e. broadcast at a

lower rate). Such a strategy is optimal in the sense that it minimizes the average latency

amongst all clients over all data items. In a real-time database environment, minimizing the

average latency ceases to be the main performance criterion. Rather, guaranteeing (either

deterministically or probabilistically) that timing constraints imposed on data retrieval will

be met becomes the overriding concern.

There are many reasons for subjecting Bdisk data retrieval to timing constraints. Perhaps

the most compelling is due to the absolute temporal consistency constraints [24] that may be

imposed on data objects. For example, the data item in an Airborne Warning and Control

System (AWACS) recording the position of an aircraft with a velocity of 900 km/hour may

be subject to an absolute temporal consistency constraint of 400 msecs, in order to ensure

a positional accuracy of 100 meters for client transactions (e.g. active transactions that

are �red up to warn soldiers to take shelter). Notice that not all database object will

have the same temporal consistency constraint. For example, the constraint would only

be 6; 000 msecs for the data item recording the position of a tank with a velocity of 60

km/hour. Other reasons for imposing timing constraints on data retrieval from a Bdisk

are due to the requirements of database protocols for admission control [12], concurrency

control, transaction scheduling [23], recovery [15], and bounded imprecision [21, 25].

Bestavros [11] and Baruah & Bestavros [7] have de�ned a generalized model for real-time

fault-tolerant Bdisks, that also incorporates consideration of the e�ect of transient failures
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upon the real-time properties of Bdisks. They have shown that designing programs for

Bdisks speci�ed in this model is closely related to the scheduling of pinwheel task systems,

and have exploited this relationship to design algorithms for the e�cient generation of real-

time fault-tolerant Bdisks programs.

A model for Broadcast Disks: We model a Bdisks system as being comprised of a set

of data items (or �les) that must be transmitted continuously and periodically to the client

population. Each data item consists of a number of blocks. A block is the basic, indivisible

unit of broadcast (e.g., page). We assume that the retrieval of a data item by a client is

subject to a time constraint imposed by the real-time process that needs that data item.

A1 A2 B1 A3 B2 A4 B3 A5 A1 A2 B1 A3 B2 A4 B3 A5

Program Broadcast Period

Figure 2: A at broadcast program

Figure 2 illustrates a simple example of a at broadcast program in which two �les A and

B are transmitted periodically by scanning through their respective blocks. In particular,

�le A consists of 5 blocks A1; : : : ; A5 and �le B consists of 3 blocks B1; : : : ; B3.

Real-Time Mutable Broadcast Disks: As a general rule, the data to be broadcast

on Bdisks is not completely static over time, but needs to be occasionally updated. Pre-

vious studies on designing program schedules for real-time Bdisks|namely the techniques

of Bestavros in [11], Baruah and Bestavros in [7], and Xuang et al in [26]|have tended to

ignore the issue of updates;1 as a consequence, timeliness guarantees are compromised during

an update. That is, if schemes based upon these previous studies are used for the design of

broadcast programs, the real-time guarantees that are extended by these schemes hold only

in the \steady state", when there are no updates|while a �le is being updated, the latency

guarantee with respect to that particular �le is not honoured.

1The work of Acharya, Franklin, and Zdonick in [2] has considered the problem of disseminating updates

in Bdisk programs, but has done so without taking the real-time constraints imposed on Bdisk data into

consideration.
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This research: The purpose of this research is to design algorithms for the e�cient gen-

eration of real-time Bdisk programs, that continue to o�er timing guarantees during �le

updates. We term a real-time Bdisk system that o�er such a capability a real-time mutable

Bdisk system.

2 Proportionate Progress

The task of communicating a data item on a Bdisk, hereinafter refered to as a Bdisk �le,

subject to a timing constraints requires that the various blocks of that �le be broadcast

periodically. Such a periodic broadcast task Ti is characterized by a period pi 2 N and

a resource usage requirement ei 2 N, with the interpretation that the task Ti expects to be

allocated the communication channel for ei units of time in every interval ftjk � pi � t <

(k+1) �pig, for each k 2 N. Given an instance � = fT1; T2; : : : ; Tng of n such periodic tasks,

the periodic scheduling problem [20] is concerned with attempting to schedule these n

tasks on a single resource (e.g. processor or communication channel) so as to satisfy the

constraints of each task. Task preemption is permitted, but only at integral boundaries as

dictated by the integral boundary constraint|for each integer t � 0, the resource must be

allocated to exactly one task (or remain unallocated) over the entire time interval [t; t + 1)

(we refer to this time interval as time slot t.)

Liu and Layland have shown [20] that
P

Ti2�
(ei=pi) � 1 is a necessary and su�cient

condition for a system � of periodic tasks to have a periodic schedule; furthermore, the

earliest deadline �rst scheduling algorithm (EDF) [13] has been proven to be an optimal

scheduling algorithm.

Temporal fairness: The issue of fairness in resource-allocation and scheduling has re-

cently been attracting considerable attention [5, 6, 8]. Motivated no doubt in part by

applications, such as multimedia, which are characterized by fairly \regular" resource re-

quirements over extended intervals, attempts have been made to formalize and characterize

notions of temporal fairness. The concepts of proportionate progress and pfairness were in-

troduced in [8] (see also [9]) to quantitatively measure the fairness of a schedule. We briey

review these ideas below. We start with some conventions:
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� We adopt the standard notation of having [a; b) denote the contiguous natural numbers

a; a+ 1; : : : ; b� 1.

� The real interval between time t and time t + 1 (including t, excluding t + 1) will be

referred to as slot t, t 2 N.

� We will consider an instance that involves one resource and a set � = fT1; T2; : : : ; Tng

of n tasks sharing that single resource.

� Each task Ti has two integer attributes|a period pi and an resource usage requirement

ei. We de�ne the weight wi of task Ti to be the ratio ei=pi. Furthermore, we assume

0 < wi � 1.

A schedule S for instance � is a function from the natural numbers f0; 1; 2; : : :g to f0; 1; : : : ; ng,

with the interpretation that S(t) = i; i 2 f1; : : : ; ng, if the resource is allocated to task Ti

for slot t, and S(t) = 0 if the resource is unallocated during time-slot t. Schedule S is a

periodic schedule if and only if

8k; Ti : k 2 N; Ti 2 � : jftjt 2 [0; pi � k) and S(t) = xgj = ei � k :

That is, each task Ti is allocated exactly k � ei slots during its �rst k periods, for all k.

Let us de�ne the lag of a task Ti at time t with respect to schedule S, denoted lag(S; Ti; t),

as follows:

lag(S; Ti; t)
def

= wi � t� jft0jt0 2 [0; t) and S(t0) = igj :

The quantity wi �t represents the amount of time for which task Ti should have been allocated

the resource over [0; t), and jft0jt0 2 [0; t) and S(t0) = igj is equal to the number of slots for

which task x was actually scheduled during this interval.

Informally, a schedule displays proportionate progress (equivalently, satis�es pfairness,

or is pfair) if at all integer time instants t and for all tasks Ti, the lag of task Ti at time

t|the di�erence between the amount of time for which Ti should have been allocated the

resource, and the amount of time for which it was allocated the resource|is strictly less

than 1 in absolute value. More formally, schedule S is pfair if and only if

8Ti; t : Ti 2 �; t 2 N : �1 < lag(S; Ti; t) < 1:

That is, a schedule is pfair if and only if it is never the case that any task Ti is overallocated

or underallocated by an entire slot.
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Pfairness is an extremely stringent form of fairness|indeed, it has been shown [8] that

no stronger fairness can be guaranteed to be achievable for periodic task systems in general.

(Consider a system of n identical tasks, each with weight 1=n. The task that is scheduled at

slot 0 has a lag (�1+1=n) at time 1, and the one scheduled at slot n� 1 has a lag (1� 1=n)

at time (n � 1). By making n large, these lags can be made arbitrarily close to �1 and

+1, respectively.) It was proven in [8] that pfair scheduling is a stronger requirement than

periodic scheduling, in that any pfair schedule is periodic. The converse, however, is not

generally true.

The concept of pfairness was initially introduced in the context of constructing periodic

schedules for a system of periodic tasks on several identical processors|the multiprocessor

periodic scheduling problem [19]. The following theorem was proved in [8]:

Theorem 1 A system of periodic tasks can be scheduled in a pfair manner onm processors2

provided the weights of all the tasks sum to at most m.

As a special case, we obtain the following corollary with respect to scheduling on a single

resource:

Corollary 1.1 Every system of periodic tasks � for which (
P

Ti2�
wi � 1) holds has a pfair

schedule on a single resource.

In addition, an on-line scheduling algorithm|Algorithm PF|was presented and proven cor-

rect. This algorithm has a non-trivial priority scheme that requires O
�P

all Ti
dlog(pi + 1)e

�
time to determine the m highest-priority tasks in the worst case. However, for the single

resource case, Algorithm PF reduces to a simple variant of EDF-scheduling, and can be im-

plemented using the heap-of-heaps data structure [22] in O(logn) time per time slot, where

n is the number of tasks.

3 Representing Bdisk Programs as Pfair Schedules

Let a real-time broadcast �le Fi be represented by two integer parameters: Fi = (mi; di),

with the interpretation that it consists of mi blocks, and any client wishing to retrieve this

�le must be able to do so within di block-times (\slots") of wanting to do so. We start with

some de�nitions:

2Or resources in general.
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1. A broadcast program P for a system of n broadcast �les F1; F2; : : : ; Fn is a function

from the non-negative integers to f0; 1; : : : ; ng, with the interpretation that P (t) = i,

1 � i � n, i� a block of �le Fi is transmitted during time-slot t, and P (t) = 0 i�

nothing is transmitted during time-slot t.

2. P:i is the sequence of non-negative integers t for which P (t) = i.

3. Broadcast program P satis�es broadcast �le condition bc(i;mi; di) i� P:i contains at

least mi out of every di consecutive non-negative integers.

4. Broadcast program P satis�es pfair task condition pfc(i; wi) i� P:i contains at least

bwi � tc and at most dwi � te of the integers 0; 1; : : : ; t � 1, for all t. That is, the slots

labelled P:i would comprise a pfair allocation to a task Ti with weight wi.

5. Broadcast program P satis�es a conjunct of (pfair task or broadcast �le) conditions i�

it satis�es each individual condition.

6. Let S1 and S2 be (broadcast/ pfair/ conjunct) conditions. We say that S1 ) S2 i�

any broadcast program satisfying S1 also satis�es S2. We say S1 � S2 i� S1 ) S2 and

S2 ) S1.

It has previously been shown in [7] that generating a broadcast schedule for n broadcast �les

is exactly equivalent to constructing a schedule for a system of n pinwheel tasks. From this

equivalence, and the relationship between pinwheel scheduling and pfair scheduling recently

identi�ed by Baruah and Lin [10], we obtain the following lemma:

Lemma 1 If mi � 2, then

bc(i;mi; di)( pfc(i; wi)

for all wi � mi=(di � 1).

The following theorem is a direct consequence:

Theorem 2 The problem of constructing a broadcast schedule for F1; F2; : : : ; Fn can be

solved by obtaining a solution to the following pfair scheduling problem: Determine a broad-

acst program that satis�es
n̂

i=1

(pfc(i;mi=(bi � 1)) ; (1)

provided mi � 2 for all i, 1 � i � n.
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Proof Sketch: Let P be a broadcast program satisfying ^n
i=1(pfc(i;mi=(bi � 1)). By

de�nition, P satis�es each of the individual pfair task conditions pfc(i;mi=(bi � 1)) for each

i. Hence by Lemma 1, P satis�es each bc(i;mi; di), and is thus a broadcast program for

broadcast �les F1; F2; : : : ; Fn.

Example 1 Consider a system of two broadcast �les F1 = (6; 11) and F2 = (3; 10), for which

a broadcast schedule needs to be constructed. In keeping with Theorem 2, we attempt to

determine a pfair schedule for the system of two periodic tasks T1 and T2 having weights

w1 = 6=(11� 1) = 0:6 and w2 = 3=(10� 1) = 0:3 respectively. The initial portion

of the pfair schedule produced by Algorithm PF on this periodic task system is given below:

slot: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

task: 1 2 1 1 2 1 1 2 1 2 1 1 2 1 0

slot: 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

task: 1 2 1 1 2 1 1 2 1 2 1 1 2 1 0

The reader may validate that any interval of 11 contiguous slots contains at least 6 1's,

and that any interval of 10 contiguous slots contains at least 3 1's.

4 Updating broadcast �les

As a general rule, the data broadcast on Bdisks are not completely static over time; rather

they must be occasionally updated. Ideally, we would like such updating at the broadcasting

server to occur transparently to the client, who should su�er no degradation in performance

(in the form of tardy �le-availability) during an update. To illustrate the issues involved, let

us consider a concrete example. Suppose that a �le Fi = (mi; di) is being downloaded by a

client; after the client has downloaded mi�1 blocks (in the worst case, this could take di�1

time slots), however, the broadcast server begins broadcasting the updated version of the �le.

The previously-stored mi � 1 blocks are now useless to the client, who has to download mi

blocks of the updated �le over the next di time slots, for a total delay of 2di � 1 time slots.

We wish to design Bdisk programs with the following performance characteristics: The

access time for a �le Fi is di time slots even during an update to �le Fi. We permit that

a request for Fi during an update interval may be honoured with either the original �le or
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the updated one: of course, consistency requirements rule out a mix of some blocks of one

and the rest of the other. In this paper, we do not consider the possibility of broadcasting

di�erential updates to enable clients that retrieved a stale �le to \correct" their copies

without having to wait unduly for that correction. Such a process is entirely possible in

our scheme, but is orthogonal to the issue of switching to new \versions" of broadcast �les

without compromising the timeliness guarantees for retrieval of such �les from real-time

Bdisks.

We assume that requests to update �les are made at the Bdisk server relatively infre-

quently. Namely, the frequency of updating a broadcast �le is much lower than the frequency

of broadcasting that �le. When such an update request is made, it is desirable that it be

serviced \as soon as possible;" however, there is no hard deadline associated with when this

update is actually performed. We will refer to a broadcast program for broadcast �les F1,

F2, : : :, Fn as a mutable broadcast program, if it permits such updates for each of the �les

F1; F2; : : : ; Fn

Our approach towards designing mutable broadcast programs is to reserve some broadcast

bandwidth for an update server, and to use this update server to broadcast both the old and

the updated versions of a �le while it is being updated. That is, suppose that we decide to

update �le Fi at a particular time instant:

1. All the slots reserved in the broadcast program for both Fi and the update server are

immediately pressed into service, in broadcasting the next mi � 1 blocks of the old

version of Fi. This consumes mi � 1 slots|let us suppose that x slots reserved for Fi,

and mi � 1� x slots reserved for the update server, were used during this process.

2. After these mi � 1 blocks have been transmitted, blocks of the updated �le begin to

be transmitted, and these are cyclically transmitted (until the next update). For this

purpose, the next x slots reserved for the update server, as well as all the slots reserved

for Fi, are used.

3. After x slots of the update server have been used to transmit the updated version of

Fi (as described above), the update server ceases broadcasting blocks from Fi, and is

available to update other �les. Thus, a total of (mi � 1 � x) + x = mi � 1 blocks of

the update server are used.
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We will see below that the update server has available to it at least mi slots out of any

contiguous interval of di slots. Assuming for the moment that this is true, it is not di�cult

to see that this update procedure is correct. For, suppose that the server begins updating

�le Fi at time-instant ts (i.e., at the start of slot ts).

� A client that had downloaded any blocks of Fi prior to ts can download the remaining

blocks of the old version of Fi by its deadline|this follows from the observation that

each of the next mi � 1 blocks of the old version that are transmitted are transmitted

no later than they would have been in the absence of the update.

� Any client that decides after instant ts to download Fi will choose to retrieve the

updated version3. Once again, this can be done within di slots, since

1. Over the interval [ts; ts + d), at least 2mi slots are available for transmitting the

old and the updated versions of Fi; hence, at least 2m� (m� 1) = m+1 slots

are available for transmitting blocks of the updated version of Fi.

2. Since mi � 1 blocks of the update server are used during the update process, the

update server is not used after instant ts + di; after this instant, blocks of Fi are

transmitted only in the slots reserved for it. Hence, the update process de�nitely

terminates by time ts + di.

3. Each block of the updated version of Fi that is transmitted during the update

process (i.e., during interval [ts; ts + di)) is transmitted no earlier as a result of

the update than they would have been if they had been transmitted only in the

slots reserved for Fi.

We now address the issue of bandwidth allocation for the update server, in order that it

have available to it at least mi slots out of any contiguous interval of di slots, for all i. Let

�i
def

= mi=(di � 1), and �max
def

= maxni=1f�ig. As a consequence of Lemma 1 and the fact that

�max � mi=(bi� 1) for all i, 1 � i � n, we may conclude that a broadcast schedule satisfying

pfc(i; �max) will satisfy bc(i;mi; di) for all i. Hence, reserving bandwidth for a periodic task

Tn+1 with weight wn+1 = �max should provide su�cient bandwidth for the update server:

3We assume that each block of the old version of a �le that is tranmsitted during an update has a

�led identifying it as an old version of a �le currently being updated | a client not already committed to

retrieving this old version will ignore such a block.
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Theorem 3 The problem of constructing a mutable broadcast schedule for F1; F2; : : : ; Fn

can be solved by obtaining a solution to the following pfair scheduling problem: Determine

a broadacst program that satis�es

pfc(n+ 1; �max) ^

 
n̂

i=1

(pfc(i; �i)

!
; (2)

provided mi � 2 for all i, 1 � i � n.

A su�cient condition for the existence of mutable broadcast programs: Given a

system of broadcast �les F1; F2; : : : ; Fn, Fi = (mi; di), we wish to determine whether we can

design a mutable broadcast program for this �le system. By Theorem 3, this problem can

be solved by determining a pfair schedule on a single resource for a periodic task system of

n + 1 tasks, with total weight �max +
Pn

i=1 �i. By Corollary 1.1, this is possible, provided

that (�max +
Pn

i=1 �i) � 1; i.e.,

�max � 1�
nX

i=1

�i (3)

Inequality 3 provides a quick su�cient test for determining whether we can construct a

mutable broadcast program for a given system of broadcast �les.

Example 2 Consider a system of three broadcast �les F1 = (3; 12), F2 = (2; 16), and

F3 = (3; 13), for which a broadcast schedule needs to be constructed. To determine whether

a mutable broadcast program can in fact be constructed for this system, we need to determine

whether Inequality 3 holds. For this system, �1 = 3=11, �2 = 2=15,and �3 = 3=12; hence,

�max = 3=11. Since 3=11 < 1 � (3=11 + 2=15 + 3=12), we conclude that Inequality 3 does

hold for this system. Hence, to determine a broadcast program for this system of broadcast

�les, we can, by Theorem 3, obtain a pfair schedule for the system of four tasks T1, T2, T3,

and T4, with weights w1 = 3=11, w2 = 2=15, w3 = 3=12, and w4 = 3=11, respectively. The

initial portion of the pfair schedule produced by Algorithm PF on this periodic task system

is given below:

slot: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

task: 1 4 3 1 4 3 2 4 1 3 2 4 1 3 4

slot: 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

task: 1 3 2 4 1 3 0 4 1 3 4 1 2 3 1
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The reader may verify that the broadcast conditions for each of the three �les is satis�ed,

in that any interval of di contiguous slots contains at least mi slots labelled i, for i = 1; 2;

and 3. The slots allocated to task T4 are the ones reserved for use by the update server|the

reader may also verify that these are su�cient to permit the updating of �les with no impact

on performance. We illustrate the update process, if, for example, �le F3 were to be updated

starting at instant 12 (\3̂" denotes blocks of the old �le F3, while \3" denotes blocks of the

updated F3):

slot: 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

block: 3̂ 3̂ 3 3 3 3 3

The next m3 � 1 = 2 slots allocated to either F3 (T3) or the update server (T4) are

used to transmit blocks of the old version of F3. Thus, blocks of the old version of F3 are

transmitted during slots 13 and 14. The quantity x, representing the number of F3's slots

used in doing so, is equal to one. Hence, the next one slot of the update server's (at time

18) also goes to transmit blocks of �le F3, and the update process ends at the end of slot

18. At the end of slot 18, any client thatis in the process of retriving �le F3 has either zero,

one or two blocks of (the updated version of) the �le; however, if there had been no update,

the same client would have had exactly one block less. Assuming that the client was going

to meet its deadline in the absence of an update, therefore, it follows that the deadline will

be met now as well.

5 Update latency

Since the update procedure described in Section 4 requires that the update server be available

when an update is initiated, this implies that only one update can be processed at a time.

If some other �le is being updated when an update request for �le Fi arrives, then the time

at which the update of Fi is initiated may be delayed. We de�ne the update latency of an

update request as the length of the time interval (in number of slots) between the slot at

which an update request is made, and the slot at which the update is initiated. (Note that,

since any client that begins downloading the �le once the update has been initiated will

get the updated version, the latency interval is measured until the beginning of the update

process, rather than until the end.)
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We make a couple of assumptions regarding the arrival of update requests at the server:

(1) these requests arrive at the server at the beginning of time-slots, and are queued at the

server until one is selected to be serviced; (2) there is never more than one update request

for the same �le queued at the server at any given time | if a new update request for a �le

arrives before the update process has been initiated for a prior update request of the same

�le, then the prior request is discarded.

When there is more than one update request queued at the server at any given time, the

server can choose from among several service policies in determining the order of service. We

study a couple of these policies below. We will look only at work-conserving policies|if the

update server is available and there is a waiting update request, then some update request

is immediately serviced.

FCFS: In this update policy, update requests are serviced in the order in which they arrive

(ties|simultaneous arrivals|are broken arbitrarily). Under this policy, we claim that the

worst-case update latency occurs when an update of the �le with the largest size has just

been initiated, and update requests for all other �les (including this one) immediately arrive

simultaneously. In that case, the �le that is last in the queue will have the largest update

latency, being required to wait for every other �le's update to complete (twice for the largest

�le) before its own update can be initiated.

Let us assume that �le Fj is this last �le in the queue. Let Fmax denote the �le with

the largest size: mmax

def

= maxni=1fmig. Since an update of �le Fi consumes mi � 1 blocks

allocated to the update server, the total number of blocks of the update server consumed

before Fj's update can commence is equal to

(mmax � 1) +

 
nX

i=1

(mi � 1)

!
� (mj � 1)

= (mmax �mj) +
nX

i=1

(mi � 1):

Recall that the bandwidth allocated the update server is wn+1. It can be shown that (mmax�

mj) +
Pn

i=1(mi � 1) blocks are allocated to the update server over an interval of length

1 + d((mmax �mj) +
Pn

i=1(mi � 1))=wn+1e. From Corollary 1.1, it follows that the largest

value for wn+1 is (1�
Pn

i=1 �i) (recall that �i was de�ned to be equal to mi=(di� 1)). Hence,
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the update latency for �le Fj is no more than

1 +

&
mmax �mj +

Pn
i=1(mi � 1)

1�
Pn

i=1 �i

'
: (4)

SJF: In this update policy, smaller-sized �les are updated before larger ones (ties|equi-

sized �les|are broken arbitrarily). While this update policy will have smaller update la-

tency than the FCFS update policy, the update-latency for every �le (other than the unique

smallest-sized one, if there is one) cannot be bounded.4

Between these two extremes of FCFS and SJF, hybrid variants can be de�ned which

incorporate some form of aging to the pure SJF, such that update requests that have been

waiting for a long time tend see their priority increase. Another alternative would be to

enforce a minimum inter-update time for SJF to allow for a bounded latency of updates.

6 Summary

The importance of real-time Bdisk technology for information retrieval stems from two im-

portant trends that are only likely to continue in the future: (1) With the advent of mobile

computers and cellular communication, it is expected that most clients in large-scale dis-

tributed environments will have limited storage capacities, a limited upstream bandwidth (if

any) for transferring information to servers, and a large downstream broadcast bandwidth

for receiving information from servers. (2) The increasing reliance on large-scale information

systems and databases in supporting decision making processes|whether initiated by hu-

mans (e.g. stock-market trading) or by computers (e.g. collision avoidance systems aboard

future vehicles on IVHS) subjects the information retrieval process to stringent timing con-

straints on data retrieval.

Previous work on real-time broadcast disks (Bdisks) has ignored the important issue of

accomodating updates. As a consequence, if schemes based upon these previous studies are

used for the design of broadcast programs, the real-time guarantees that are extended by

these schemes hold only in the \steady state", when there are no updates|while a �le is

being updated, the latency guarantee with respect to that particular �le is not honoured. In

this paper we have extended our previous pinwheel-based programming of real-time Bdisks

4To understand why this is the case, it su�ces to consider a situation in which update-requests for the

smallest-sized �le are repeatedly made, forcing all update-requests for larger �les to wait for ever.
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[7] to allow for the support of mutable broadcast programs. In particular, we have de�ned

a formal model for the speci�cation of the real-time requirements for mutable broadcast

disk �les. We have shown a close link between the design of broadcast programs for such

disks and the previously studied problems of pinwheel scheduling, proportionate progress,

and pfair scheduling [8, 9]. These results enable the design of e�cient Bdisk programming

techniques in the presence of updates in Bdisk data.
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