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Abstract

We propose and evaluate admission control mechanisms for ACCORD, an Admission Con-
trol and Capacity Overload management Real-time Database framework|an architecture
and a transaction model|for hard deadline RTDB systems. The system architecture con-
sists of admission control and scheduling components which provide early noti�cation of
failure to submitted transactions that are deemed not valuable or incapable of completing
on time. In particular, our Concurrency Admission Control Manager (CACM) ensures
that transactions which are admitted do not overburden the system by requiring a level of
concurrency that is not sustainable. The transaction model consists of two components:
a primary task and a compensating task. The execution requirements of the primary
task are not known a priori, whereas those of the compensating task are known a priori.
Upon the submission of a transaction, the Admission Control Mechanisms are employed
to decide whether to admit or reject that transaction. Once admitted, a transaction is
guaranteed to �nish executing before its deadline. A transaction is considered to have
�nished executing if exactly one of two things occur: Either its primary task is completed
(successful commitment), or its compensating task is completed (safe termination). Com-
mitted transactions bring a pro�t to the system, whereas a terminated transaction brings
no pro�t. The goal of the admission control and scheduling protocols (e.g., concurrency
control, I/O scheduling, memory management) employed in the system is to maximize
system pro�t. In that respect, we describe a number of concurrency admission control
strategies and contrast (through simulations) their relative performance.
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yThis work was conducted as part of the author's Ph.D. thesis at Boston University.



1 Introduction

The main challenge involved in scheduling transactions in a Real-Time DataBase (RTDB) system is

that the resources needed to execute a transaction are not known a priori. For example, the set of

objects to be read (written) by a transaction may be dependent on user input (e.g., in a stock mar-

ket application) or dependent on sensory inputs (e.g., in a process control application). Therefore,

the a priori reservation of resources (e.g., read/write locks on data objects) to guarantee a partic-

ular Worst Case Execution Time (WCET) becomes impossible|and the non-deterministic delays

associated with the on-the-y acquisition of such resources pose the real challenge of integrating

scheduling and concurrency control techniques.

Current real-time concurrency control mechanisms resolve the above challenge by relaxing the

deadline semantics (thus suggesting best-e�ort mechanisms for concurrency control in the presence

of soft and �rm, but not hard deadlines), or by restricting the set of acceptable transactions to a

�nite set of transactions with execution requirements that are known a priori (thus reducing the

concurrency control problem to that of resource management and scheduling).1

Consider the huge body of research on real-time concurrency control, where complex time-

cognizant concurrency control techniques are proposed for the sole purpose of maximizing the

number of transactions that meet their deadlines (or other metrics thereof). A careful evaluation

of these elaborate techniques reveals that their superiority is materialized only when the RTDB

system is overloaded. However, when the system is not overloaded, the performance of these

techniques becomes comparable to that of much simpler techniques (e.g., 2PL-PA). It is important

to observe that when a RTDB system is overloaded, a large percentage of transactions end up

missing their deadlines. This observation leads to the following question: How better would be the

performance of the system if these same transactions (that ended up missing their deadlines) were

not allowed into the system in the �rst place? The answer is obviously \much better" because with

hindsight, the limited resources in the system would not have been wasted on these transactions

to start with. While such a clairvoyant scheduling of transactions is impossible in a real system,

admission control and overload management techniques could be used to achieve the same goal. In

this paper, we introduce and evaluate such techniques.

Admission control and overload management techniques preserve system resources by min-

imizing the likelihood of a transaction being accepted for execution, and later not being able to

meet its deadline. Obviously, such a situation cannot totally be eliminated in a system where the

execution requirements of transactions are not known a priori. Therefore, missing a deadline is

always a possibility, with which the system must contend. For transactions with �rm deadlines,

such a situation is tolerable because commitment past a �rm deadline is of no value. However, for

transactions with hard (soft) deadlines, such an abortion is disastrous because missing a hard (soft)

deadline results in an in�nite (eventual) loss.2 Thus, to support transactions with hard deadlines

1In this paper, we do not consider approaches that attempt to relax ACID properties|serializability in particular.
2Most RTDB systems avoid dealing with the consequences of missing a hard deadline by restricting the class of
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without a priori knowledge of their execution requirements, there must exist some compensating

actions that, when executed in a timely fashion, would allow the system to be \bailed out" from

the disastrous consequences of missing a hard deadline.

Our research is motivated by research problems in application areas such as command and

control systems, the stock market and robotics. Consider, for example, industrial automation

processes which commonly employ robots, typically in a hazardous environment. Here, a real-time

database is used to represent the state of the world, i.e. the location of the robot arms and of

the physical components which are manipulated by the robot's arms. The robot may be required

to complete a transaction (an atomic set of actions) by a speci�ed time before proceeding to the

next one. Compensating actions are needed, for example, if a transaction that is about to miss its

deadline must be terminated safely (requiring the clearing of the workspace, for example).

We start in section 2 with an overview of our transaction processing model and the di�erent

components therein. Next, in section 3 we describe the various concurrency admission control

mechanisms to be used in our simulations. Then in section 4 we present and discuss our simulation

baseline model and results as well as results of our value-cognizant protocol. In section 5, we review

previous research work and highlight our contributions. We conclude in section 6 with a summary

and a description of future research directions.

2 System Model

Each transaction submitted to the system consists of two components: a primary task and a

compensating task. The execution requirements for the primary task are not known a priori, whereas

those for the compensating task are known a priori.3 Figure 1 shows the various components in

our RTDB system.

When a transaction is submitted to the system, an Admission Control Mechanism (ACM)

is employed to decide whether to admit or reject that transaction. Once admitted, a transaction

is guaranteed to �nish executing before its deadline. A transaction is considered to have �nished

executing if exactly one of two things occur: Either its primary task is completed, in which case

we say that the transaction has successfully committed, or its compensating task is completed, in

which case we say that the transaction has safely terminated. A committed transaction brings a

positive pro�t to the system, whereas a terminated transaction brings no pro�t. The goal of the

admission control and scheduling protocols employed in the system is to maximize pro�t.

When submitted to the system, each transaction is associated with a deadline and a value. The

value of a transaction represents the pro�t that the system makes if the transaction is successfully

committed (i.e. its primary task is committed by its deadline). In this paper we consider only

transactions they manage to those with either �rm or soft deadlines.
3While the execution time of a transaction's primary task is not known a priori, we assume that this execution

time cannot exceed the di�erence between the transaction's deadline and its submission time.
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hard deadlines and thus assume that no transaction will �nish (i.e. successfully commit or safely

terminate) past its deadline.4 We initially assume that all transactions bring in equal pro�t when

committed on time, and then consider the case where the pro�ts of transactions di�er. Moreover,

once admitted to the system, a transaction is absolutely guaranteed (as opposed to conditionally

guaranteed) to �nish and cannot now be rejected in order to accommodate a newly submitted

transaction.

The ACM consists of two major components: a Concurrency Admission Control Manager

(CACM) and a Workload Admission Control Manager (WACM). The CACM is responsible for

ensuring that admitted transactions do not overburden the system by requiring a level of concur-

rency that is not sustainable. The WACM is responsible for ensuring that admitted transactions

do not overburden the system by requiring computing resources (e.g., CPU time) that are not

sustainable. Our focus in this paper is on the details of the CACM.

Compensating tasks are executed when a transaction with a hard deadline is deemed incapable

of committing by its deadline. Due to the urgency associated with the execution of such compen-

sating tasks, we assume a 2-tier priority scheme for CPU scheduling purposes. In particular, all

compensating tasks are assumed to have a higher priority than primary tasks. Thus a primary

task may be preempted (or aborted) by a compensating task, whereas a compensating task cannot

4Our current research in [31] involves extending our results to soft and �rm deadline systems by allowing for a

pro�t/loss past a transaction's deadline.
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be preempted by either a primary task or another compensating task under any condition. Notice

that this 2-tier priority assumption still allows primary tasks (compensating tasks) to be prioritized

amongst themselves.

In this paper we study our admission control mechanism in conjunction with two types of

concurrency control protocols, namely Optimistic Concurrency Control with forward validation

(such as OCC-BC [29] or SCC-nS [7]), or Pessimistic Concurrency Control (PCC) with Priority

Abort (such as 2PL-PA [3]).

2.1 Workload Admission Control Manager

The source contains a set of transactions which are generated o�-line. Each enters the system

at a random time and is �rst processed by the ACM. The decision of whether to admit or reject

a transaction submitted for execution is based upon a feedback mechanism that takes into con-

sideration the current demand on the resources in the system. This decision is motivated by the

overall goal for maximizing pro�t by maximizing the number|or sum of the values|of successful

commitments (when primary tasks �nish) and minimizing the number of safe terminations (when

compensating tasks �nish). For example, if the percentage of the CPU bandwidth already commit-

ted to compensating tasks (of admitted primary tasks), within the interval from the current time

to the deadline of the submitted transaction is high, it may be prudent for the WACM to reject

the submitted transaction. For transactions which successfully pass through the admission control

process, the WACM attempts to schedule the compensating task in the Compensating Task Queue

(CTQ) whose organization is discussed later in this section. Even if the current demand on the

system's resources is low, a transaction is rejected if it is not feasible to schedule its compensating

task (e.g., it cannot be accommodated in the CTQ). Details regarding the WACM can be found in

[9].

2.2 Concurrency Admission Control Manager

In order to ensure that compensating tasks can execute unhindered (and thus complete within

their WCETs) the CACM must guarantee that the admission of a transaction into the system does

not result in data conicts between the compensating task of that transaction and other already

admitted transactions. In a uniprocessor system employing an Optimistic Concurrency Control

(OCC) algorithm with forward validation (e.g., OCC-BC), compensating tasks (which cannot be

preempted) are guaranteed to �nish execution without incurring any restart delays. The same

is true of a uniprocessor system employing a Pessimistic Concurrency Control (PCC) algorithm

with priority abort (e.g., 2PL-PA) because compensating tasks execute at a higher priority than

primary tasks and, thus, are guaranteed to �nish execution without incurring any blocking delays.

This is not true in a multiprocessor system, where multiple compensating tasks may be executing

concurrently. In such a system, the CACM ensures that only those compensating tasks that do not

conict with each other are allowed to overlap when executed.
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2.3 Processor Scheduling Algorithm

There are two queues managed by the processor scheduler: the Primary Task Queue (PTQ) and

the Compensating Task Queue (CTQ). Each admitted transaction contributes one entry in each of

these queues. A primary task is ready to execute as soon as it is enqueued in the PTQ, whereas

a compensating task must wait for its start time, speci�ed by the ACM. As indicated before,

compensating tasks execute at a priority higher than that of the primary tasks. Thus, the scheduling

algorithm will always preempt a primary task in favor of a compensating task which is ready to

execute.

Since all tasks in the PTQ are ready to execute, a scheduling algorithm must be used to appor-

tion the CPU time amongst these tasks. We use the Earliest Deadline First algorithm (EDF) [26],

which is optimal for a uniprocessor system with independent, preemptible tasks having arbitrary

deadlines [15].

The CTQ is organized as a series of slots, one for each compensating task. Each slot contains

the compensating task id as well as its start and end times. Slots are order according to ascending

start time. The CPU continues to service primary tasks until all are �nished or a compensating task

must begin executing, i.e. its start time has arrived. In the later case, the primary task currently

using the CPU is preempted and enqueued back into the PTQ where it awaits further processing,

if the compensating task is associated with a di�erent primary task. Otherwise, the primary task

is aborted and its compensating task executes.

2.4 Concurrency Control Manager

The function of the CCM is to enforce the concurrency control protocol in use. For OCC techniques,

this enforcement is done at the time a transaction �nishes its execution, either by the commitment

of its primary task or by the safe termination of its compensating task. In the case of OCC-BC,

conicting (primary tasks of) transactions are restarted, whereas in the case of SCC-nS, conicting

(primary tasks of) transactions are rolled back to a point preceding the conicting action. For PCC

techniques, this enforcement is done at the time of each read/write request. For compensating

tasks, which execute at a higher priority, such a request is always granted. This may result in

aborting/restarting conicting primary tasks. Notice that it is impossible for two compensating

tasks to conict since the processor scheduler guarantees that compensating tasks do not overlap.5

For primary tasks, such a request may result in blocking (if the read/write lock is not available).

All transactions, whether �nished or rejected, are removed from the system and sent to the

sink which generates statistical information used to evaluate the system performance.

5This condition is true in any uniprocessor system where compensating tasks cannot be preempted.
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3 Optimizing Pro�t through ACM

3.1 Introduction

As described in [9], the motivation for employing an admission control mechanism, especially in

situations of overload, is to allocate system resources, such as the CPU, wisely, i.e. Reject transac-

tions when the processor load exceeds a certain threshold level so that processor cycles can be used

for admitted transactions, which if successfully committed, return a pro�t to the system. In this

research, the focus is again on admission control mechanisms, but we shift our attention to conicts

over logical resources (i.e. database objects) which are resolved by concurrency control protocols.

Speci�cally, the CACM is responsible for ensuring that admitted transactions do not overburden

the system by requiring a level of concurrency that is not sustainable. Two questions immediately

come to mind:

1. How do we measure the level of concurrency? And

2. What level of concurrency can be sustained such that the admission of a new transaction is

pro�table, i.e. adds value to the system?

Before addressing these questions, we �rst review some database nomenclature.

Basic database access operations are traditionally of two types:

1. read(Ti;X)

2. write(Tj; Y )

where X and Y are database objects (e.g., page, block, record, etc) read by transaction Ti and

written by Tj, respectively. Two operations potentially conict if both access the same data object

and at least one of the operations is a write. Speci�cally, the potentially conicting operations

are:

� write(Ti;X), read(Tj; X): Read After Write (RAW)

� read(Ti;X), write(Tj; X): Write After Read (WAR)

� write(Ti;X), write(Tj;X): Write After Write (WAW)

Other research [6, 41, 36] has considered semantic-based concurrency control whereby seman-

tic information on database operations is exploited to enhance the degree of concurrency. Objects

such as stacks and queues with operations of push, pop, top and enqueue, dequeue, respectively, are

typical. These operations can achieve the same results as read and write. For example, enqueue
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writes an object to the queue while dequeue reads an object. A higher degree of concurrency is

attainable due to the particular data structure used, i.e. enqueue and dequeue can occur simul-

taneously as long as the two operations access a di�erent element in the queue. Our concurrency

admission control mechanism is applicable to these types of objects/operations as well. The use of

these operations simply requires the construction of the appropriate conict (commutativity) table

for each pair of operations. In this research, we only consider read and write operations.

3.2 Concurrency Control Mechanisms

The concurrency control protocol enforced dictates not only the manner in which both potential

and materialized conicts are dealt with but also when conicts are detected and how conicts are

resolved. We review two types of concurrency control protocols: pessimistic and optimistic.

3.2.1 Pessimistic Concurrency Control (PCC)

With pessimistic concurrency control techniques, such as 2PL [16], conicts never materialize since

potential conicts are avoided by blocking transactions. For example, if write(Ti;X) is followed by

read(Tj;X), transaction Tj is blocked until Ti either commits or aborts (assuming this is the only

conict that Tj has). 2PL has been criticized as being too pessimistic since it blocks transactions

often unnecessarily and for potentially unbounded time. Real-time variants of 2PL have been

suggested. One such variant is 2PL High Priority (2PL-HP) [3] which augments 2PL with a

priority-based conict resolution mechanism. A higher priority, lock requesting transaction aborts

and restarts all lower priority, lock holding transactions which have a lock on the desired object

in a conicting lock mode. Moreover, 2PL-HP prevents deadlocks due to its conict-based priority

mechanism (assuming that static, unique priorities are assigned to all transactions).

3.2.2 Optimistic Concurrency Control (OCC)

Unlike pessimistic techniques, optimistic protocols like OCC [24] ignore potential conicts by al-

lowing database operations issued by transactions to be performed when requested. Speci�cally,

transactions proceed in three phases: read, validate and write. During the read phase, a trans-

action both reads and writes data objects to its private workspace, deferring any updates to the

database until the write phase. Upon reaching the validation phase, checks are made to ensure that

any previously ignored potential conicts have not materialized. A transaction which successfully

passes through the validation phase moves onto the write phase where the transaction's update

operations are applied to the database. Transactions failing the validation phase are restarted.

With OCC techniques, serializability is guaranteed by the validation phase.

Transaction validation occurs in one of two manners: forward validation [18] and backward

validation [24], depending upon the manner in which conicts are detected. With backward valida-

tion, if the read set of the validating transaction Ti intersects with the write set of any transaction
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which committed since Ti started its read phase, Ti is restarted|the potential conict has materi-

alized. With forward validation, if the write set of the validating transaction Ti intersects with the

read set of active, uncommitted transactions, then either Ti is restarted or the conicting, active

transactions are restarted. Since OCC is a restarted-based protocol, deadlocks are not possible.

With classical OCC [24], conicts are not detected until the validation phase. Resources are

wasted by those transactions which reach the validation phase only to be restarted. In order to waste

less system resources and restart transactions as early as possible, both of which are important for

real-time systems, [29, 34] introduced a variant of forward validation which employs a broadcast

commit (BC) mechanism. OCC-BC guarantees that a transaction reaching its validation phase

will commit as checks for materialized conicts are made with uncommitted transactions rather

than with committed transactions. Uncommitted transactions which conict with the validating

transaction are restarted.

Although OCC-BC detects conicts earlier than with simple OCC, it su�ers from the possi-

bility of unnecessary aborts, i.e. potential conicts may actually never materialize. For example,

suppose transactions Ti and Tj execute the following sequence of operations:

read(Ti;X),read(Tj ;X),write(Tj ; X),read(Tj ; Y ),read(Ti; Z),validatej

where validatej denotes the validation of Tj .

The broadcast of the commitment of Tj (validatej) results in the restart of active, uncom-

mitted transaction Ti which has read an object which Tj has written. However, suppose that Ti
had not been aborted but allowed to execute its remaining operation, validatei (other such sce-

narios are possible as well). Ti would commit now as well. The restart of a transaction due to the

validation of another does not necessarily imply the materialization of a potential conict.

Due to their non-blocking behavior, optimistic concurrency control techniques, such as OCC-

BC, are better able to guarantee both absolute and relative consistency [4, 35] requirements. Con-

currency control protocols which are blocking-based, such as PCC, lend themselves to using stale

rather than recent data.

3.3 Concurrency Admission Control Manager

3.3.1 Introduction

We return now to address the two questions posed in the �rst part of this section, regarding the

level of concurrency sustainable by a system. We begin with the de�nition of delay followed by

conict probability. Consider a system with one processor and one transaction TX
i where TX

i takes

c time units to complete its execution. TX
i denotes transaction i which is a member of transaction

class X. Now further suppose a system with two processors and two transactions, TX
i as before
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and another transaction T Y
j . If T

X
i now takes e time units to execute, where e > c, the additional

time needed by TX
i , e� c, is referred to as delay. This additional time is a result of conicts over

data. The same notion applies for systems with an in�nite number of processors and transactions.

For restart-based concurrency control protocols, a delay is the consequence of a restart which

leads to the following de�nition:

De�nition 1 For restart-based concurrency control protocols, in systems with in�nite processing

resources, the delay of TX
i , due to the commitment of T Y

j denotes the restart of TX
i with probability

p.

TX
i may be restarted once or possibly a multiple number of times. We measure the level of

concurrency between two transactions TX
i and T Y

j by the conict probability de�ned as follows:

De�nition 2 The Conict Probability CP (TX
i ; T Y

j ) of transaction TX
i with respect to T Y

j equals

p, the probability that the commitment of the latter transaction T Y
j results in the delay of the former

transaction TX
i .

In a similar fashion, the delay derived from the conict probability can be de�ned for blocking-

based concurrency control techniques such as PCC to mean the block of TX
i .

As exempli�ed earlier, OCC-BC has a number of properties which make it an attractive

protocol to use in systems with transactions having timing requirements. These properties include:

� allowing data access to occur when requested,

� guaranteeing the commitment of transactions reaching their validation phases,

� equivalence of serialization and commit orders, and

� lending itself improved chance of guaranteeing temporal consistency.

In this research, we restrict our attention to OCC-BC as a concurrency control mechanism

representative of restarted-based protocols. Moreover, we treat WAW conicts using Thomas' Write

Rule (TWR) [39] which ignores write operations which arrive too late.

For OCC-BC, CP (TX
i ; T Y

j ) = 0 is indicative of the read/write sets of TX
i and T Y

j not inter-

secting, i.e. the commitment of T Y
j never restarts TX

i . On the other hand, 0 < CP (TX
i ; T Y

j ) � 1

suggests that the read/write sets may intersect|the commitment of T Y
j may restart TX

i . Since

conicts may be uni-directional, CP (TX
i ; T Y

j ) is not necessarily equal to CP (T Y
j ; T

X
i ).

The de�nition of Conict Probability from above can be further re�ned to be optimistic,

pessimistic, or speculative. With an optimistic conict probability, we speci�cally examine the

conict probabilities between PTX
i , the primary task of TX

i , with respect to PT Y
j , the primary
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task of T Y
j i.e. what is the probability that PTX

i is restarted due to the commitment of PT Y
j ?

Here, we optimistically assume that primary tasks will successfully commit thereby making the

execution of the corresponding compensating tasks unnecessary. Similarly, CP (TX
i ; T Y

j ) can be

de�ned pessimistically whereby we inspect the conict probability between PTX
i with respect to

CT Y
j , i.e. we pessimistically assume that primary tasks will abort resulting in the execution of

the corresponding compensating tasks. We can also have a speculative method for calculating the

conict probabilities in that we utilized both the optimistic and pessimistic conict probabilities,

weighting each one, for example, by the percentage of transactions successfully committed and

percentage of transactions safely terminated, respectively, during a speci�ed interval of time. In

this research we restrict our focus to optimistically de�ne conict probabilities.

3.3.2 Generating Conict Probabilities

There are generally four approaches to obtaining the actual conict probabilities used by the CACM.

First, with the dynamic on-line approach, conict probabilities can be dynamically calculated

based upon trace observations of an on-line system. In particular, as each transaction Ti commits,

the transactions which it delays (restarts) as a result of its commitment are noted. Once the

system has been observed for a su�cient period of time, conict probabilities can be determined

and continually updated as the system progresses.

Second, with the dynamic o�-line approach, conict probabilities can again be dynamically

calculated but this time based upon trace observations of an o�-line system, similar to the deter-

mination of the optimal threshold used by the workload admission control manager.

Third, with the static exhaustive approach, conict probabilities can be determined during

transaction pre-compilation, a type of analysis typically performed in many real-time systems, given

knowledge of the read/write sets of the transaction set.

Fourth, with the static random approach, rather than examine all possible sequences of trans-

action traces, a random sampling of a subset is taken. For systems with a small number of trans-

actions, the static exhaustive approach is certainly computationally feasible. However, when the

number of transactions becomes large, then the static random approach is more reasonable. Con-

sider a system with 100 transactions each with 4 possible traces. The total number of possible

traces is: (100 � 4) � 100!. A random sampling would be (100 � i) � j! such that 1 � i � 4 and

1 � j � 100.

3.3.3 Determining the Admission Control Decision

To determine the level of concurrency that can be sustained by the system, as each transaction TX
i

is submitted to the system, we check CP (TX
i ; T Y

j ) for all T Y
j currently in the system. In particular,

we are interested in the average conict probability that TX
i has with each T Y

j currently in the
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system as well as the number of these transactions T Y
j with which TX

i potentially conicts with,

i.e. CP (TX
i ; T Y

j ) > 0. We de�ne these terms below.

De�nition 3 The Transactions In Conict TIC(TX
i ) for newly submitted transaction TX

i is de-

�ned as:

TIC"(T
X
i ) = number of CP (TX

i ; T Y
j ) > "; 8 T Y

j 2 AT

where AT is the set of currently Admitted Transactions and " is a constant � 0.

As mentioned earlier, for OCC-BC, CP (TX
i ; T Y

j ) = 0 is indicative of the read/write sets of TX
i

and T Y
j not intersecting; hence we always exclude from the calculation of TIC(TX

i ) those conict

probabilities whose values equal 0. By appropriately setting the value of ", we can bias the count

of the number of transactions in conict to be an optimistic one (for CP (TX
i ; T Y

j ) values tending

towards 1), a pessimistic one (CP (TX
i ; T Y

j ) values tending towards 0), or somewhere in between

the two extremes.

De�nition 4 The Average Restart Probability ARP (TX
i ) for newly submitted transaction TX

i is

de�ned as:

ARP"(T
X
i ) =

1

TIC"(T
X
i )

�
X

8j:CP (TX
i
;TY
j
)>"

CP (TX
i ; T Y

j ); 8 T Y
j 2 AT

where AT is the set of currently Admitted Transactions and " is a constant � 0.

ARP"(T
X
i ) represents the average restart probability incurred by TX

i as a result of having

conict probabilities CP (TX
i ; T Y

j ) > " with admitted transactions T Y
j .

In deciding whether or not to admit TX
i to the system, we calculate the Conict Index for

Submitted transaction TX
i which takes into account both ARP"(T

X
i ) and TIC"(T

X
i ). Speci�cally,

De�nition 5 The Conict Index for Submitted transaction CIS(TX
i ) for newly submitted trans-

action TX
i is de�ned as:

CIS(TX
i ) = � �

TIC"(T
X
i )

N
+ (1� �) � ARP"(T

X
i )

where N is the number of transactions currently admitted to the system and � is a weight factor.

The �rst term in the sum,
TIC"(TXi )

N
, represents the fraction of admitted transactions which

the submitted transaction TX
i potentially conicts with, with probability greater than ", i.e. the

percentage of transactions whose commitment may result in the restart of TX
i . The second term,

ARP"(T
X
i ), as discussed earlier, is the average restart probability incurred by TX

i . The importance

of these two distinct terms can be seen in the following example. Case 1: TIC"(T
X
i ) = 0:9,

N = 100, and ARP"(T
X
i ) = 0:9, i.e. the submitted transaction conicts with 90% of the admitted

transactions and with an average restart probability of 90%. Case 2: TIC"(T
X
i ) = 0:1, N = 100,
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and ARP"(T
X
i ) = 0:9. Here, although the average restart probability is high, the same as in case

1, the number of admitted transactions in conict is now quite low at 10%. In case 1, we would

consider rejecting TX
i given that both TIC and ARP are high|setting � to 0:5 allows CIS to take

into consideration both TIC and ARP . In case 2, we would consider accepting TX
i since it only

conicts with a small number of admitted transactions. Utilization of � allows the value of CIS

to be determined by the percentage of admitted transactions in conict (when our interest is only

in the number of potential conicts above "), by the average restart probability (when our interest

is only in the average restart probability), or some combination of the two.

In addressing the question regarding the level of concurrency which can be sustained by

the system, we must also determine what the e�ect of admitting a new transaction TX
i will be

upon the currently admitted transactions. Similar to ARP" and TIC", we compute the Admitted

transactions Average Restart Probability (AARP) and Admitted Transactions In Conict (ATIC),

respectively, as follows:

ATIC"(T
X
i ) = number of CP (T Y

j ; T
X
i ) > "; 8 T Y

j 2 AT

AARP"(T
X
i ) =

1

ATIC"(TX
i )

�
X

8j:CP (TY
j
;TX
i

)>"

CP (T Y
j ; T

X
i ); 8 T Y

j 2 AT

Similar to CIS, we compute the Conict Index for Admitted transactions (CIA) as follows:

CIA(TX
i ) = � �

ATIC"(T
X
i )

N
+ (1� �) � AARP"(T

X
i )

where like �, � is a weight factor which may be the same as or di�erent from �. In this

research we assume that � and � have the same constant value.

To complete the decision regarding the admission/rejection of TX
i , we compare CIS and CIA

as follows:

if (CIS is less than CTS) and (CIA is less than CTA), admit TX
i ; otherwise reject TX

i

CTS and CTA are the Conict Thresholds for the Submitted transaction and Admitted Transac-

tions, respectively, which indicate the level of concurrency maximizing the value-added to (pro�t

of) the system for the particular transaction characteristics at hand and are simulation input pa-

rameters. We restrict our attention to the case where CTS and CTA are equal.

Each transaction which successfully passes through the CACM is admitted to the system

provided that its compensating task can be scheduled according to Latest Fit (LF) scheduling
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technique (see [9] for details). Those transactions failing the CACM test are rejected from the

system.

The aforementioned CACM procedure does not take into consideration transactions' val-

ues when making admission control and scheduling decisions. When transactions return di�erent

pro�ts to the system upon their timely completion, the admission control mechanism must be

value-cognizant. In the next section, we describe a value-cognizant concurrency admission control

protocol.

3.3.4 Value-cognizant CACM

The CACM procedures described in the previous section are not cognizant of transactions' values,

i.e. all admitted transactions equally contribute to the calculation of TIC, ARP , ATIC, and

AARP . When transactions belong to di�erent classes, distinguished by transaction value, for

example, the CACM procedures must be enhanced to take into account the values of transactions

when making admission control decisions. In particular, higher-valued transactions should have a

greater inuence on the admission control process while lower-valued transactions should have a

lesser inuence. Speci�cally,

De�nition 6 The Value of the Admitted Transactions at Risk V ATR(TX
i ) for newly submitted

transaction TX
i is de�ned as:

V ATR"(T
X
i ) =

X
8j:CP (TY

j
;TX
i

)>"

V (T Y
j ); 8 T Y

j 2 AT

where AT is the set of currently Admitted Transactions, " is a constant � 0, and V (T Y
j ) is the

value of transaction T Y
j .

De�nition 7 The Weighted Admitted transactions Average Restart Probability WAARP (TX
i )

for newly submitted transaction TX
i is de�ned as:

WAARP"(T
X
i ) =

1

V ATR"(T
X
i )

�
X

8j:CP (TY
j
;TX
i

)>"

CP (T Y
j ; T

X
i ) � V (T Y

j ); 8 T Y
j 2 AT

where AT is the set of currently Admitted Transactions, " is a constant � 0, and V (T Y
j ) is the

value of transaction T Y
j .

V ATR(TX
i ) represents the sum of the values of the admitted transactions T Y

j which could be

a�ected by the admission of TX
i , i.e. CP (T Y

j ; T
X
i ) > ". WAARP (TX

i ) is similar to AARP (TX
i )

de�ned previously. With AARP , all transactions contribute equally to the �nal result; however,

with WAARP , each admitted transaction contributes relative to its value so that higher-valued

transactions have more inuence on the �nal result while lower-valued transactions have less inu-

ence.
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The �nal concurrency admission control decision for newly submitted transaction TX
i is based

up the following conditions:

if

��
V (TX

i
)

V ATR(TX
i

)
> 1

�
or
�
WAARP (TX

i ) < CTA
��

, admit TX
i else reject TX

i

The conditions above determine the pro�t of admitting a new transaction in relationship to

the loss incurred by previously admitted transactions. The question which we seek to answer is,

\Do we stand to gain more than we stand to loose in admitting a new transaction?".
V X
i

V ATR(TX
i

)

is the ratio of the value of the newly submitted transaction TX
i to the sum of the values of the

admitted transactions which could be a�ected by the admission of TX
i . A value greater than one

is indicative of TX
i being more valuable than the admitted transactions which potentially conict

with it, so we admit TX
i , i.e. we stand to gain more than we stand to loose. On the other hand,

values of
V (TX

i
)

V ATR(TX
i

)
less than or equal to one are indicative of these admitted transactions being at

least as valuable, if not more valuable, than TX
i so we further check that WAARP is below CTA,

the Conict Threshold for the Admitted transactions as de�ned earlier. If WAARP exceeds the

threshold then we conclude that since the value of the submitted transaction is less than or equal

to those which potentially conict with it, we reject TX
i .

4 Performance Evaluation

We have implemented the above ACM policies for a uniprocessor system using OCC-BC. In the

�rst part of this section, we show the value of concurrency admission control by comparing the

performance achievable through workload admission control and a combination of workload and

concurrency admission control. Since we assume that all transactions bring in equal pro�t when

committed before their deadlines, we desire to maximize the number of primary task completions

while minimizing the number of compensating task completions (i.e. primary task abortions). In

the second part of this section, we show the performance of the value-cognizant CACM technique in

comparison to non-value-cognizant CACM. The superior results of value-cognizant CACM demon-

strate the advantage of utilizing the values of both the submitted transaction as well as admitted

transactions in the admission control process.

4.1 Baseline Experiments

Table 1 shows the baseline parameters for our simulations. The RTDB system model used in our ex-

periments consists of a uniprocessor system with a 1000-page, memory-resident database. A second

CPU is dedicated to supporting both admission and concurrency control protocols. Transactions in

the baseline model are from di�erent transaction classes|Xclasses = 3|whereby transactions in

each class have similar characteristics such as value, transaction size, etc. as described below. The
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primary task of each transaction reads 16 pages selected at random with a 25% update probability.

The CPU time needed to process a read or a write is 2.5 ms. Thus, in the absence of any data

or resource conicts, the primary task of each transaction would need a serial execution time of

50 ms CPU time.6 The compensating task of each transaction follows a normal distribution with

a mean of 10 ms and standard deviation of 5 ms.7 Transaction deadlines are related to the serial

execution time through a slack factor, such that (deadline time - arrival time) = SlackFactor �

serial execution time.

The transaction inter-arrival rate, which is drawn from an exponential distribution, is varied

from 5 transactions per second up to 50 transactions per second in increments of 5, which represents

a light-to-medium loaded system. We used two additional arrival rates of 75 and 100 transactions

per second to experiment with a very heavy loaded system. Each simulation was run three times,

each time with a di�erent seed, for 200,000 ms. The results depicted are the average over the three

runs.

Parameter Meaning Value

CPUTime CPU time per page access 2.5 ms

DBsize Database size in pages 1,000

ArrivalRate Transaction arrival rate 5 - 100 TPS

Xclasses Number of transaction classes 1

Xsize Number of reads per transaction 16

UpdateProb Update Probability 0.25

CTCompTime Mean Compensating Task Time 10 ms

CTStdDev St. Dev. of CT Time 0.5 CTCompTime

SlackFactor Slack factor 2

TaskSchd Task scheduling protocol EDF

CTSchd CT scheduling protocol FF, LF, LMF

Thrsh CT computation threshold 0.125

CCntrl Concurrency Control protocol OCC-BC

Table 1: Baseline Workload Parameters

Each of the three transaction classes makes up 1=3 of the o�ered load and is equally important,

i.e. all transactions have value 1. In particular, the relative conict probabilities for each class of

transactions are as follows:

� Class I: read-only. 0 - 30% conict probability with Classes II and III.

� Class II: update. 70 - 100% conict probability with Classes II and III.

6Notice that these �gures (i.e. number of pages accessed and serial execution time) are only needed to generate

the workload fed to the simulator. They are not known to the ACM.
7This amounts to an average of 4 page accesses.
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� Class III: update. 70 - 100% conict probability with Classes II and III.

In addition, the following parameter settings were used:

� " = 0

� � = � = 0:5

� CTS = CTA

With these transaction classes and parameter settings we are able to study the e�ects of

two transaction classes having very high conict probabilities with one another as well as with

transactions in the same class. With " = 0, we take into account all conict probabilities, no

matter how small. By setting both � and � equal to 0:5, we equally weigh the two factors used in

the calculation of CIS and CIA, respectively.

We conducted two sets of experiments, the �rst in which the WACM is the only form of

admission control employed and the second in which both WACM and CACM are enforced. Testing

the performance of the CACM alone necessitates the use of a multiprocessor system which we do

not consider here but in our future work. Consequently, we seek to determine the improvement

in performance that the CACM a�ords above and beyond simple WACM. In particular, in the

second set of experiments, transactions which are submitted to the system are �rst processed by

the WACM whereby LAF compensating task scheduling is attempted. Those transactions which

violate the LAF workload threshold are rejected from the system. However, those successfully

passing through the WACM move on to the CACM.

As depicted in �gure 2-a, the performance of utilizing both workload and concurrency admis-

sion controls is better than just workload admission control on its own. Speci�cally, at 50 TPS,

the pro�t is 10% higher while at 100 TPS it is 14% higher. These results suggest the value in using

both the WACM and the CACM|the processor load and the level of concurrency conict must be

monitored in order to prevent the system from thrashing.

4.2 Value-cognizant Results

The baseline parameters used for the value-cognizant CACM simulation experiments are identical

to those used in the value-incognizant CACM simulation experiments from the previous section.

Each of the three transactions classes, as before, make up 1=3 of the o�ered load and have the same

conict probabilities. However, transactions in Classes I and II have value 1 (less critical) whereas

those in Class III have value 10 (more critical).

Figure 2-b shows the results of our value-cognizant CACM simulations in comparison to our

value-incognizant CACM. Two sets of curves are shown. The �rst shows the Pro�t Realized using
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Figure 2: (a) Workload AC vs. Workload/Concurrency AC (b) Basic CACM vs. Value-cognizant

CACM

WACM/Value-Incognizant CACM (PR-VI-CACM) and WACM/Value-Cognizant CACM (PR-VC-

CACM) while the second shows the Unrealized Pro�t|pro�t that had to be given up by the admis-

sion control protocol|for WACM/Value-Incognizant CACM (UP-VI-CACM) and WACM/Value-

Cognizant CACM (UP-VC-CACM). The results clearly show that the use of a value-cognizant

admission control protocol outperforms a value-insensitive one, especially when the system is not

under-utilized. For example at an arrival rate of 100 TPS, utilization of WACM/value-cognizant

CACM results in 18% more pro�t when compared to WACM/value-incognizant CACM. The di�er-

ence between the two unrealized pro�t curves (UP-VI-CACM and UP-VC-CACM), although not

as pronounced as the di�erence in realized pro�t, is nevertheless compelling.

5 Related Work

Our work di�ers from previous research in that our transaction model incorporates not only primary

tasks, with unknown WCET, but also compensating tasks. The admission control mechanism used

admits transactions into the system with the absolute guarantee that either the primary task will

successfully commit or the compensating task safely terminate. There have been a number of

similar models suggested in the literature. These are contrasted to our model below.

Liu et al. [27] developed the imprecise computation model which decomposes each task
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into two subtasks, a mandatory part and an optional part. Others employing this model include

Audsley et al. [5] and Davis et al. [14]. Our model di�ers from the imprecise computation model

in that the WCET requirements for the mandatory and optional parts are assumed in [27, 5, 14],

whereas they are assumed only for the compensating tasks in our model. Also, unlike the imprecise

computation model, we start o� with the execution of the optional component (the primary task),

leaving the mandatory component (the compensating task) to a later time (if needed). In a sense,

our paradigm is complementary to the imprecise computation paradigm.

A number of papers have employed the primary / alternative model in which the primary task

provides good quality of service and is preferable to the alternative which produces an acceptable

quality of service. Alternatives handle timing faults in [25, 13] and processor failures in [30, 32, 23].

Our notion of a compensating task is indeed similar to that of an alternative; execution of a

compensating task provides less attractive quality of service in comparison to the execution of the

primary task. The similarities end here, however. The alternatives in Liestman and Campbell are

not subject to timing failures, whereas in our model compensating tasks may have hard, soft or

�rm deadlines. Moreover, in Chetto and Chetto, the alternatives are periodic in nature, unlike

compensating tasks which are not.

In [38], Tew et al. introduce a task model with two components: a load task and an execute

task whereby the load task �rst loads the task from disk into memory thereby making the execute

task eligible to run (i.e. there is a precedence relation between the two tasks). The task model of

Tew et al. is similar to our transaction model. Both models consist of a main task (primary task,

execute task). However, the motivation for having the second component di�ers. Our compensating

task is necessitated by the fact that the read/write sets and WCETs of primary tasks are non-

deterministic, whereas Tew et al. are interested in accounting for loading a task into memory.

Most previous RTDB system studies have assumed that the only possible outcome of a trans-

action execution is either the commitment or the abortion of the transaction. In many systems,

a third outcome of an outright rejection may be desirable. For example, in a process control ap-

plication, the outright rejection of a transaction may be safer then attempting to execute that

transaction, only to miss its deadline. Our work allows the system to reject a transaction, thus

making it possible for other actions to be taken in a timely fashion (possibly by the outside mecha-

nism that submitted that very same transaction). Also, this exibility allows the system to ration

its resources in the most pro�table way, by only admitting high-value transactions when the system

is overloaded, while being less choosy when the system is under-loaded.

Admission control protocols and feedback mechanisms have been employed in a variety of

RTDB system components: transaction scheduling [19, 20], memory allocation for queries [33], and

B-tree index concurrency control [17]. Haritsa et al. [19] incorporate a feedback mechanism into an

Adaptive Earliest Deadline (AED) and Hierarchical Earliest Deadline (HED) scheduling strategies

for transactions in a �rm deadline environment. Both AED and HED attempt to stabilize the

overload performance of EDF. Goyal et al. [17] describe an approach that allows transactions to
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be rejected as part of an optimization of the Load Adaptive B-link algorithm (LAB-link), a real-time

version of index (B-tree) concurrency control algorithms in �rm-deadline RTDB systems. LAB-link

ensures that the root of the B-tree (disk) does not become a bottleneck by rejecting transactions

when the percentage of transactions missing their deadlines is above a preset threshold. By tuning

the system based on the percentage of missed deadlines, their technique does not guarantee a

maximum pro�t. Also, the notion of a guarantee (whether for commitment or safe termination by

the deadline) is non-existent in their work.

Hong et al. [20] introduce the Cost Conscious Approach (CCA) to scheduling transactions in

a soft RTDB system. CCA takes into account both static (i.e. deadline) and dynamic (i.e. e�ective

service time, restart cost) aspects of a transaction's execution when dynamically computing the

priority of a transaction. Chakravarthy et al. [12] extend CCA to adapt to the system load|

CCA-ALF|Cost Conscious Approach with Average Load Factor. Like CCA, CCA-ALF uses

both static and dynamic information in calculating the priority of a transaction. In addition,

through a feedback mechanism, CCA-ALF incorporates the average load factor of the most recent

N completed transaction. Simulation experiments of a multi-class system are performed in which

3 transaction classes are speci�ed based upon the cpu time needed per page access (i.e. transaction

length is varied). Since only soft deadline transactions are considered, Chakravarthy et al. do not

employ an admission control protocol.

The focus of Pang et al. [33] is on admission control and memory management of queries

requiring large amounts of computational memory in a �rm RTDB system. Their Priority Memory

Management (PMM) algorithm consists of two components: admission control and memory allo-

cation. The admission control component dynamically sets the target MPL by using a feedback

process based upon information from previously completed queries. The memory allocation com-

ponent also utilized feedback obtained from previously completed queries in order to determine the

memory allocation strategy to follow (i.e. Max or MinMax).

In all of the above research, the basic system model is one of transactions (or queries) accessing

information in the database, after which, each transaction either completes by its deadline or is

aborted when its deadline is missed. The only two possible transaction execution outcomes are

commitment and abortion. In [33], when the number of transactions admitted to the system exceeds

the MPL, new transactions are made to wait. This non-zero admission waiting time is detrimental

to the progress of these transactions completing by their deadlines. The situation is analogous in

[17]. When the load control mechanism is active and the utilization of the bottleneck resource is

above the preset threshold, new transactions are not allowed to enter the system. Eventually, these

transactions are aborted when it is discovered that their deadlines have passed.

The performance objective in most previous RTDB system studies has been to minimize the

number of transactions that miss their deadlines in a hard or �rm deadline environment, or to

minimize tardiness, i.e. the time by which late transactions miss their deadlines, in a soft deadline

environment. The assumption in these systems is that all transactions are of equal value. In many
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systems, this assumption is not valid, making it necessary to consider the worth of a transaction,

when making resource allocation and conict resolution decisions. In such systems, the performance

objective becomes that of maximizing the system pro�t.

The notions of transaction values and value functions [22, 28], used to express the value that

a transaction has to the system as a function of time, have been utilized in both RTS [10, 11] as

well as in RTDB systems [2, 8, 19, 21, 37, 40]. In [10, 11], the value of a task is evaluated during

the admission control process. The decision to reject a task or remove a previously guaranteed task

is based upon tasks' values. A task which is accepted into the system is conditionally guaranteed8

to complete its execution provided that no higher valued (critical) task (with which it conicts)

arrives. In all cases, the WCET of the tasks is assumed to be known a priori.

In the context of RTDB systems, Huang et al. [21], continuing with the work of [37], use

transactions' values to schedule system resources (e.g., CPU) and in conict resolution protocols

in a soft real-time environment. Abbott and Garcia-Molina [2] also employ transactions' values to

assign priorities to transactions for scheduling system resources in a soft RTDB system. Extending

their AED scheduling algorithm to be value-cognizant, Haritsa et al. [19], developed Hierarchical

Earliest Deadline (HED) for a �rm RTDB system. All of the aforementioned research (with the

exception of [2] which does not have any performance results) make use of transactions' values

which are time-invariant.

A di�erent approach is taken by Bestavros and Braoudakis [8] and Tseng et al. [40]. In [8]

each transaction is characterized by a time-variant value function which is used to specify both

the nature of the timing constraint (i.e. no deadline, hard, soft, or �rm deadline) as well as the

transaction's importance to the system relative to other transactions. For a soft RTDB system,

Bestavros and Braoudakis introduce the concept of a penalty gradient, i.e. the rate at which a

transaction looses its value when it commits past its deadline. Transactions which commit by

their deadlines return their full value to the system while those that commit past their deadlines

return a diminished value, a value speci�ed by the transaction's associated value function. Value

functions are speci�cally used in [8] in order to determine whether it is advantageous to delay the

commitment of a transaction which has �nished its execution, i.e. Will the commitment of this

transaction return more pro�t to the system if it is committed now or delayed to a later point in

time?

Like [8], Tseng et al. use time-variant value functions in their Highest Reward First (HRF)

scheduling algorithm for a �rm RTDB System. The priority of a transaction, which in continuously

evaluated [1], is based upon the expected value of the transaction at its completion time rather than

on the current time. The value function of a transaction is such that a transaction has a constant

value until a critical point (determined by an simulation input parameter), a linearly decaying value

after the critical point until the deadline, and 0 otherwise.

8This is in contrast to an absolute guarantee, which speci�es that once admitted to a system, the task (or its

alternative or compensating task) will complete its execution by its deadline.
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The utility of taking into consideration transactions'/tasks' values when making such decisions

as admission control and scheduling has been shown in the above mentioned research as well as in

this research. However, unlike all other work in value-cognizant protocols, our transactions model

consists not only of primary tasks but also compensating tasks which deal with timing faults of

primary tasks.

6 Conclusion and Future Work

In this paper, we proposed an admission control mechanism based upon the level of concurrency

conict in the system. For each transaction submitted, we determined the worthiness of admitting

the new transaction, i.e. Will the admission of the new transaction cause a level of concurrency

that is not sustainable by the system thereby preventing the primary tasks of previously admitted

transactions from completing on time? If the admission control mechanism deemed that the admis-

sion of the submitted transaction caused more harm than good|potentially more value was lost

than was gained|the submitted transaction was reject, otherwise, it was accepted. In addition, we

developed a value-cognizant, concurrency admission control protocol which takes into consideration

transaction's values when making the admission control decision.

Our current research e�orts focus on evaluating the performance of pessimistic as well as

speculative CACM techniques. Moreover, our work to date has concentrated on uniprocessor

systems. We are currently investigating the extension of our admission control and scheduling

protocols to multiprocessor systems. A number of challenging questions arise. How are transactions,

both their primary tasks and compensating tasks allocated to processors? What type of CPU

scheduling discipline should be used? How valuable is the use of the WACM in a multiprocessor

system?
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