
Game Theory and Randomized Algorithms

Guy Aridor

Game theory is a set of tools that allow us to understand how decision-
makers interact with each other. It has practical applications in economics,
international relations, computer science, and many other disciplines. Though
many game theoretic models utilize unrealistic assumptions at times, the in-
tuition and results garnered from them usually give meaningful insights into
the phenomena trying to be modelled. Different game theoretic models make
different assumptions regarding the structure and knowledge of the decision
makers in the game, but two core assumptions made in game theoretic mod-
els are that the decision-makers are rational and that they take into account
the decisions made by the other decision-makers involved in the game (i.e.
they are strategic). We say that a decision-maker is rational if he or she
attempts to maximize their expected utility or payoff from the game.

In order to model the interactions between two decision-makers, we intro-
duce the concept of a game. A game is a description of strategic interactions
that the decision-makers (from here on, players) involved in the game can
take as well as their preferences and interests. There are various different
types of games, but on the most basic level there are two core types of
games. The first, simultaneous games, are games where the players decide
on the action they want to take (from here on, move) simultaneously. Due to
this, the players cannot condition their move based on what the other player
does, but rather what they believe that the other player will do. The second,
sequential form games, are games where players move sequentially. In these
types of games, players move one at a time (sequentially) and this means that
players in the game can have different strategies conditioned on what they
have observed that the other players have played. Sequential form games are
typically represented as game trees where the branches in the tree represent
strategies the user can play. This type of game provides the opportunity
for varying degrees of information between players at different points in the
game, unlike simultaneous games. When this happens, a player may not be

1



sure what particular point in the game tree they are at when deciding what
move to play. The concept used to describe and model these scenarios is an
“information set” where, when modelling the game, we can group together
the points of the game tree where a player will be unsure of which point
in the game tree he or she is at. Using information sets we can actually
represent simultaneous games using game trees rather easily. The standard
representation of simultaneous form games, however, is in a table form called
the normal form. This representation is usually much more convenient for
solving for equilibrium states, so it is generally preferred. It is possible to
represent sequential form games in normal form as well, but the size of the
table will be exponential in the size of the game tree. This seemingly could
cause problems when attempting to efficiently solve sequential form game
equilibrium, but there are methods of dealing with these issues that I will
not discuss here. For the rest of this essay, we will focus only on games in
normal form.

In general, when we are given a set of player’s potential strategies and
preferences and we use this to construct our game, we want to be able to
apply some techniques to understand the solution to this game. A solution
to a game will give us a set of possible ”steady state” moves that the players
in the game will take given the potential strategies and preferences of the
players. This is, of course, all assuming what we stated above as well as
the fact that the preferences of the other players in the game are common
knowledge. To make this more concrete, we will consider a classic example
and from it derive a technique for looking for possible stable solutions to a
game.

Suppose that there are two prisoners that have been charged with a crime
and are in custody at a police station. They are put in separate rooms and
are being interrogated. The interrogator in each room tells the prisoner in
that room that they can confess and be free with no charge as long as they
confess and serve as a witness against the other when they are released. If
one of them confesses, then the prisoner that confessed will serve no time and
the other prisoner will serve 4 years. If they both confess, they’ll each face
3 years and if neither confesses they’ll each serve only one year. Intuitively,
one would think that the equilibrium behavior would be for both of them to
not confess since we had assumed that our players are rational and therefore
want to maximize their expected utility so it would make sense for both of
them to each want to each only one year of prison. However, we have to
remember that the players are strategic, so they need to consider the actions

2



of other players in the game. Let us consider the game described above in
normal form:

Don’t Confess Confess
Don’t Confess (1, 1) (4, 0)
Confess (0, 4) (3, 3)

The moves in the first row are the moves for player 1 and the moves
in the first column are the moves for player 2. The first value in a payoff
entry describes the payoff for player 1 and the second value in a payoff entry
describes the payoff for player 2. For example, the entry in (Don’t Confess,
Confess) is (0, 4) which says that if Player 1 does not confess and Player
2 confesses then the payoff for player 1 is 0 (corresponding to 0 years in
prison) and the payoff for player 2 is 4. It should now be clear that both
players prefer to confess regardless of what the other player does. Remember
that both players act simultaneously so neither player knows what the other
player does. Since the payoffs are symmetric without loss of generality we’ll
consider only why player 1 strictly prefers confessing to not confessing. First
we ask ourselves if it’s better for player 1 to confess or not confess when player
2 doesn’t confess (the same will be true for player 2 when considering the
actions of player 1). We see that given that player 1 knows that player 2 is not
going to confess, it is better for player 1 to confess since if he or she confesses
then they will serve no time in prison, as opposed to one year. Likewise,
if player 1 knows that player 2 is going to confess, if player 1 confesses as
well then he or she will only serve 3 years in prison, as opposed to 4. As a
result, regardless of what player 2 does, it is better for player 1 to confess
and as a result player 1 will always confess. We call this type of strategy a
dominant strategy because for every possible action of the other players, it
is always better for this player to play a particular strategy. Likewise, we
call the strategy that would never be used, a dominated strategy. This tool
is useful in finding the equilibrium of games, especially when one considers
the fact that we can iteratively delete dominated strategies until we reach a
final result. However, it’s clear that not every game we consider will be able
to be solved this way. For instance, we can reason that it may be feasible
that we have some sort of equilibrium even when there are no dominated or
dominating strategies. A more general equilibrium which we will describe
is the concept of a Nash Equilibrium. There are more general equilibrium
concepts such as Nash Perfect Equilibrium, but we will not cover this here.

A Nash Equilibrium is a solution to a game that describes a profile of
moves such that for each player i and a set of moves in the game, given that

3



the rest of the players are playing their equilibrium moves, player i cannot
play a different move and improve his or her payoff. In other words, given
the actions of the other players in the game, no player can profitably deviate
from his or her set of moves. Any arbitrary game is not guaranteed to have
a Nash Equilibrium or even one unique Nash Equilibrium. An example of a
game with no unique Nash Equilibrium is matching pennies, a game where
one player picks heads or tails and wins if the other player doesn’t correctly
guess what he or she picked, but loses if the other player guesses what he
or she picked. An example of a game with multiple Nash Equilibrium is
the ”Battle of the Sexes” where two players prefer to do something together
but when picking between two possible things to do together, they have
different preferences and cannot communicate with each other which results
in multiple Nash Equilibrium. I will not go into detail about these games,
but one can easily find out more information by looking them up as they are
classic examples. We can, however, give the conditions necessary for a Nash
Equilibrium to exist.

To give the conditions necessary for a Nash Equilibrium to exist, let us
formalize what we have done previously a bit more. First, let us formalize
the concept of a game. Each game consists of a finite set, N, representing
the set of players, a non-empty set of possible actions Ai for each player
(such as confess or not confess above), and a preference relation �i for each
player which is defined over the set of actions for that player. If all of the
players have a finite set of actions, then the game is finite. These are all
simply generalizations of what was discussed before. Let us also restate
the definition of a Nash Equilibrium in terms of best-response functions. A
best-response function gives the best possible response for a player given the
strategies of all the other players in the game. Formally, Bi(a−i) = {ai ∈
Ai : (a−i, ai) �i (a−i, a

′
i) for all a′i ∈ Ai}. The definition of Nash Equilibrium

is then equivalent to a∗i ∈ Bi(a
∗
−i) for all i ∈ N . This means that we find

the best response function for each player and then find a profile of moves
for which these moves are best responses to the equilibrium moves of all the
other players. We will now use this definition to show some basic conditions
under which we can state that a Nash Equilibrium exists.

We first will go over a few basic definitions. The first is what it means for a
set to be compact. A compact set is a set where every subsequence converges
to a point in the set. To understand this, consider the two following sets [0, 1]
and [0, 1). The former is a compact set because every subsequence converges
to some point in the set. This can shown using a theorem about compact

4



sets in Rn that states that a set is compact in Rn if it is both bounded and
closed.

Clearly, [0, 1] satisfies both and is in fact compact, whereas [0, 1) is not
and therefore is not compact. We can see this because we can construct a
subsequence that converges to 1, but 1 is not in the set so the set cannot
be compact! Another important definition to go over is convexity of sets in
Euclidean space. The definition of a convex set is that if we construct a line
segment joining any pair of points of some set S, then if the line segment
lies entirely in S, S is a convex set. We will also need to describe certain
properties about the preference relation operator, �. We will say that a
preference relation � on Rn is quasi-concave if for every b ∈ Rn the set
{a ∈ Rn : a � b} is convex. In addition, a preference relation � on A is
continuous if a � b whenever there are sequences (ak)k and (bk)k in A that
converge to a and respectively for which ak � bk for all k. This means that
if we have some sequence of bundles of goods (ak) and each element of this
sequence is at least as good as a bundle b then if this sequence converges to a
then a is at least as good as b. Finally, we will need to understand fixed point
theorems and in particular Kakutani’s fixed point theorem (stated without
proof) which we will utilize in our proof. Fixed point theorems in general
say that under certain conditions there exists a point where f(x) = x. In our
proof we will need a fixed point theorem so that we can show that there exists
a value a∗ ∈ B(a∗) where B is a set-valued function B(a) = ×i∈NBi(a−i).
Kakutani’s fixed point theorem goes as follows: Let X be a compact, convex
subset of Rn and let f : X 7→ X be a set-valued function for which for all
x ∈ X the set f(x) is nonempty and convex and such that the graph of f is
closed (this means that for all sequences {xn}{yn} such that yn ∈ f(xn) for
all n, xn 7→ x, and yn 7→ y, we have y ∈ f(x)). If these conditions hold then
there exists x∗ ∈ X such that x∗ ∈ f(x∗).

Using these we state the conditions necessary for a Nash Equilibrium to
hold. A game has a Nash equilibrium if for all i ∈ N the set Ai of actions of
player is a nonempty, compact, and convex subset of a Euclidean space and
the preference relation �i is continuous and quasi-concave on Ai. The proof
for this goes as follows. Suppose we define B as above where B : A 7→ A
by B(a) = ×i∈NBi(a−i). For every i ∈ N the set Bi(a−i) is nonempty since
�i is continuous. Ai is therefore compact and since �i is quasi-concave on
Ai, Ai is convex by the definition of quasi-concave. Based on our definition
of continuous given above, B must have a closed graph since each �i is
continuous. Therefore, the conditions for Kakutani’s theorem hold and B

5



has a fixed point. From before, this must mean that there is an a∗ ∈ B(a∗)
so this means that there exists a Nash Equilibrium!

However, there are some weaknesses to using this solution concept. Namely,
we have to specify conditions for an equilibrium to exist and it will not al-
ways be the case that these conditions will hold. Ideally, we’d like to have
a solution concept that will guarantee us a solution for a large variety of
practical games. The solution concept that we defined and considered before
required that players always play one particular move. What if we added
some element of randomness to the moves by the player? In other words,
what if our solution concept gave us a probability distribution across the
strategies available to a player at a particular point in the game? In this
case, we could view a player as randomly picking strategies based on the
probability weights assigned to them by the distribution. In game theoretic
terminology, this strategy is usually called a mixed strategy or a randomized
strategy. There is some debate in the game theory community about what
the actual meaning of a mixed strategy equilibrium is. At first glance, one
would interpret the mixed strategy equilibrium as we did before where play-
ers randomly select a strategy because they are indifferent between all the
“pure” strategies, but there are other possible interpretations. For instance,
a classic example is the taxpayer audit example where the tax collector (say,
the IRS) has to decide whether or not to audit taxpayers and taxpayers have
to decide whether to pay or evade taxes. The classic analysis of this game
shows that both parties have a mixed strategy equilibrium, but the reasoning
behind mixed strategy equilibrium is supposed to be that both parties are
indifferent between their pure strategies. However, we could argue that the
IRS decides to only audit randomly because it cannot feasibly audit every-
one but it wants to audit at least some people and wants to make sure that
the taxpayers know that they are auditing so that everyone does not evade.
This would not fit with the description given above. Nevertheless, adding the
ability for players to utilize randomness in their strategy (regardless of how
we interpret it), allows for us to be able to guarantee that for most games of
practical interest, we can find an equilibrium.

Now that we have introduced the concept of mixed strategies we can in-
troduce the following theorem: Every finite simultaneous game has a mixed
strategy equilibrium. Suppose there are m possible strategies for player i
where m is finite (by assumption). We can represent the set of mixed strate-
gies for player i with a vector (p1, . . . , pm) where each pk ≥ 0 for all k and
pk represents the probability that player i uses the kth strategy. Since this

6



is a probability distribution,
∑

pk = 1. Since the set of actions is finite this
means that the set of mixed strategies is nonempty, convex, and compact.
In order to show that the preference relations must be continuous and quasi-
concave we need to define the expected payoff under a mixed strategy game.
We can define the support of the set of strategies A to be the strategies that
will be used in the mixed strategy with non-zero probability. Given that the
randomization of the strategy is done independently between the players, we
can define the probability that of a certain action profile is simply the multi-
plication of the probabilities that a particular strategy will be used across all
players and moves in the game. Therefore we can define the expected payoff
under a mixed strategy as Ui(b) =

∑
a∈A ui(a)(

∏
j∈N(aj)(bj)) where b is a

particular mixed strategy, A is the set of possible actions for player i, and u is
the utility function of player i. Note that Ui is multilinear (not to be proven
here). Due to this fact, each player’s expected payoff function is linear in the
probabilities and therefore each player’s preference relation is quasi-concave
in his own strategy and is continuous. Therefore the conditions defined above
are held and since nothing was assumed about the game besides that the set
of actions for each player was finite, every finite simultaneous game must have
a mixed strategy equilibrium. Note that if each player’s payoff function is
also quasi-concave in his own action then the game has a pure strategy Nash
equilibrium! Essentially, adding mixed strategies allows us to transform the
action set and the preference relations to satisfy the conditions noted before
for a Nash Equilibrium to exist regardless of what was each player’s action
set and preference relation.

We have now seen how adding randomization to finite strategic games
leads to us always having an equilibrium result. Next, we will see how we can
use game theory to evaluate complexity bounds on randomized algorithms.
In fact, doing so is simply a corollary to the theorem we just proved. Before
showing this, we will first define a certain type of game, a zero-sum game. A
zero-sum game is simply a game where the sum of the payoffs across all the
players at the end of the game is 0. From this, it is clear to see that in these
particular types of games, when we have two players their preferences will
be diametrically opposed due to the fact that if some player has a positive
payoff, the nature of the game requires that the other player (or players)
have a negative payoff (a good example of this is the matching pennies game
described earlier). This encourages a “maximin” strategy from both of the
players. In equilibrium, both players use this “maximin” strategy where
player i will choose the action that is best for him on the assumption that

7



whatever he does, player j will choose her action to hurt him as much as
possible.

In order to state and prove the corollary needed, let us briefly redefine
our results from before. We can say that the expected payoff for player i
from a mixed strategy game is Vi(x, y) =

∑
i=1..m

∑
j=1...n xiai,jyj where ai,j

represents an entry in the payoff matrix and x and y are mixed strategies.
We will denote this simply by V (x, y) because of the fact that our result
holds for two-player zero-sum games so V1(x, y) = −V2(x, y) and therefore
we can simply have V(x, y) denote the “value” of the game since the absolute
value of the expected payoffs will be the same. We can define an equilibrium
point in a two-player zero-sum game as a point where V (x∗, y∗) ≥ V (x, y∗)
for all x ∈ Xm and V (x∗, y) ≥ V (x∗, y∗) for all y ∈ Yn. This is equivalent
to maxx∈XmV (x, y∗) = V (x∗, y∗) = miny∈YnV (x∗, y). Suppose we use the re-
sult from the previous section that showed that an equilibrium mixed strat-
egy pair must exist. This must mean that vb = miny∈Ynmaxx∈XmV (x, y) ≤
maxx∈XmV (x, y∗) = V (x∗, y∗) = miny∈YnV (x∗, y) ≤ maxx∈Xmminy∈YnV (x, y) =
va so vb ≤ va but we know va ≤ vb which means that va = vb! Therefore, for a
two-player zero-sum game we know the following is true: maxx∈Xmminy∈YnV (x, y) =
miny∈Ynmaxx∈XmV (x, y). We will now be able to apply this to finding lower-
bounds of complexity on randomized algorithms using Yao’s principle.

Suppose that we have a problem P with a finite set X of inputs as
well as a finite set of deterministic algorithms A for solving P . For each
a ∈ A and x ∈ X we can define cost(a, x) as the cost incurred by the
algorithm, which could be its space complexity or time complexity or any
sort of measure of complexity. Suppose now we were to consider some
randomized algorithm R to solve P . This randomized algorithm, in one
particular run-through, would be equivalent to running one of the deter-
ministic algorithms in A. However, the reason the algorithm is random-
ized is because it is a probability distribution over the set of determin-
istic algorithms. Therefore the randomized algorithm’s expected cost is
cost(R, x) =

∑
a∈A Pr(a) ∗ Cost(a, x). The worst case cost occurs when

we choose the worst possible input (i.e. the one that maximizes the cost
given the randomized algorithm), so the randomized complexity is defined to
be minRmaxx∈Xcost(R, x) where minR is the best possible randomized algo-
rithm. We can also define the complexity with respect to the input distribu-
tion. For this, we can define the expected complexity cost of a deterministic
algorithm d to be cost(d,D) =

∑
x∈X Pr(x)∗Cost(x, d). Under the distribu-

tion D, the best any deterministic algorithm can do is mina∈Acost(a,D) so

8



we define the distributional complexity to be maxDmina∈Acost(a,D). To
cast the problem in game theoretic terms, we can model this as a two-
player zero-sum game where one player picks a deterministic algorithm and
the other player picks the input and the resulting payoff is the cost of
running the deterministic algorithm on the chosen input. To solve this
game, we can use the theory we proved in the previous section. We know
that an equilibrium must exist in this game and therefore this means that
maxDmina∈Acost(a,D) = minRmaxx∈Xcost(R, x). Dropping the leftmost
terms on both sides gives us mina∈Acost(a,D) ≤ maxx∈Xcost(R, x) which
gives us a lower-bound on randomized complexity! Now we can pick a distri-
bution of the inputs and if we can prove that every deterministic algorithm
incurs at least cost C then this means that the randomized complexity is
at least C. Note, however, that Yao’s principle is only valid for Las Vegas
algorithms, not Monte Carlo algorithms.

Let us see how to apply this to give a lower bound on game tree evaluation.
We define a binary game tree of height 2k where nodes in the tree at an even
distance from the root are labeled AND and nodes at an odd distance from
the root are labeled OR. The goal of the problem is to compute the value
returned by the root. A deterministic algorithm for doing this is, in the
worst case, at best n where is the total number of leaf nodes which, in this
case, is Ω(4k) since our tree is of height 2k. Consider an AND node whose
children are leaf nodes. We can construct a tree such that the first child
always considered by the deterministic algorithm returns a one so it always
has to consider the second child. Extending this logic to every level of the
tree, we can see how in the worst case the best we can do is to access all the
leaf nodes, so our algorithm runs in time Ω(n).

Now, let’s apply Yao’s principle to the problem and see if we can give a
lower bound on the expected cost of the algorithm. Remember that Yao’s
principle only applies to Las Vegas algorithms, so we will be giving a lower
bound on the complexity for Las Vegas algorithms for solving this problem.
First, we simply convert the AND-OR game trees to NOR trees. should
give the same result (not proven here). Every node in the new NOR tree
returns 1 if and only if both children return 0. This will give the same result
as the AND-OR tree we considered before (not proven here). According to
Yao’s principle we need to describe a probability distribution on the inputs
that leads to a high expected cost for any deterministic algorithm. A good
probability distribution for this is setting each leaf of the tree to 1 with
probability r = (3−

√
5)/2. The probability that NOR returns a 1 is (1−r)2 =

9



r. The expected cost C(h), where h is the height of the tree (or subtree), for
evaluating the result at a node is minimal if we figure out the result of one
part of the subtree before going to the other. In this case, if we evaluated
the left subtree of a node and it evaluated to 0 then we would know that
the final result would be 0 regardless of the value of the right subtree. The
probability that both need to be evaluated is then at least (1-r) from our
definition before. Due to this C(h) ≥ C(h− 1) + (1− r)C(h− 1). Simplified,
C(h) ≥ (2−r)h. Given that the height of our tree is log (h) and substituting,
we can end up with the lower bound of n.694. Therefore, by Yao’s Principle,
any randomized Las Vegas algorithm can at best achieve an expected cost of
Ω(n.694).

In this paper, we have developed some of the basic ideas of game theory
as well as shown how utilizing randomness when attempting to find solutions
to our games helps us always find a solution and that we can actually use
the results shown here to give lower-bounds on any sort of randomized algo-
rithms. While these results are powerful, they only cover a small subset of
game theory and its applications to computer science.

References

[1] Martin Osborne and Ariel Rubinstein, A Course in Game Theory. Cam-
bridge, Massachusetts, 1994.

[2] http://www.math.udel.edu/ angell/minimax.pdf

[3] http://www-i1.informatik.rwth-aachen.de/Lehre/SS07/VRA/Material/yao.pdf

[4] http://sublinear-course.wikispaces.com/file/view/lecture5.pdf

10


